
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Krzysztof Banaś Computational Performance 2

Scalability

➔ Standard parallel performance measures
 speed-up
 efficiency

characterise the so called strong scalability of programs
➔ Good strong scalability, being closed to the perfect, linear speed-up,

is difficult to obtain, e.g. due to:
 sequential (not possible to be parallelized) parts of the program/algorithm (as

in Amdahl law)
 communication

➔ It is possible to obtain good parallel performance also for programs
with sequential parts and communication

 for many algorithms/programs the speed-up curves become closer to the
perfect speed-up with the increasing problem size

• the most popular way for expressing problem size is the number of (dominant)
operations – the operations for which the execution time is proportional to the
number of operations

Krzysztof Banaś Computational Performance 3

Krzysztof Banaś Computational Performance 4

Scalability

➔ Strong scalability measures the performance for the increasing number
of resources used in computations (processors, computational nodes)

➔ The standard notions of scalability include also the condition of
increasing workload

➔ The increasing workload in case of programs may be the number of
dominant operations

 sometimes the execution time for single processor/core is taken as the
workload

 in the simplified analysis the time per single dominant operation is
constant – so the number of dominant operations is proportional to the
execution time for single processor/core

➔ Weak scalability denotes the scalability for the case where the total
workload is not constant (as for the strong scalability), but the workload
per single processor/core (thread/process) is constant

 constant workload per thread/process means the total workload
proportional to the number of threads/processes

Krzysztof Banaś Computational Performance 5

Weak scalability

➔ For weak scalability study, one can define the execution
time as the function of the number of threads/processes
and the workload

 T|| = T||(p, W) = (for weak scalability) T||(p, pW0)
➔ Then it is possible to define the scaled speed-up, SS(p):

 SS(p) = T||(1, pW0) / T||(p, pW0) = p*T||(1, W0) / T||(p, pW0)
➔ A program/algorithm has linear weak scalability when its

scaled speed-up is linear
➔ Linear weak scalability is equivalent to:

 the same execution time for p-times larger problems
executed on p cores/processors

 the parallel overhead constant per single processor/core for
p-times larger problems executed on p cores/processors

Krzysztof Banaś Computational Performance 6

Scalability of computations

➔ Scalability is the key property for obtaining high performance
of computations

➔ Weak scalability (almost linear) can be attributed to many
algorithms, while linear strong scalability is extremely rare

➔ The general relation:
 performance = number_of_operations / execution_time

can be transformed to the expression:
 performance = speed-up / execution_time_per_single_operation

• good speed-up denotes effectively parallelized programs
• short execution_time_per_single_operation characterises well

optimized single thread computations
• hence the total performance has two ingredients:

➢ scalability
➢ single thread performance

Krzysztof Banaś Computational Performance 7

Execution time modelling

➔ When modelling execution time several simplifying assumptions
can be adopted::

 The single thread execution time and the computation time for a
single thread in parallel programs are proportional to the number of
dominant operations, which for the considered algorithms are the
arithmetic operations

• the notion of arithmetic intensity makes also the execution time of
programs with memory limited performance proportional to the
number of arithmetic operations

 The time for performing a single dominant operation is constant and
denoted by tc

• tc is some amortized time per operation that includes memory accesses,
sequential execution system overhead (e.g. memory allocation), etc.

 Apart from tc there are only two other hardware parameters, that
characterise the communication time: ts and tw

 The parallelized computations are perfectly balanced

Krzysztof Banaś Computational Performance 8

Example

➔ Calculation of the norm of vector with size N
➔ N additions and multiplications – decomposition to obtain local sums –

perfect speed-up possible
➔ Global sum reduction – communication time dominates arithmetic

operations time
➔ Naive algorithm – all threads/processes send their local sums to the

master thread/process
➔ Execution time modelling: T||(p) = 2*N*tc/p + p*(ts+8*tw)
➔ Workload (number of operations): W = 2*N
➔ The same workload per thread/process for week scalability study:

 W(p) = W1 * p = 2 * N1 * p
 T||(p) = 2*N*tc/p + p*(ts+8*tw) = 2 * N1 * tc + p * (ts+8*tw)

➔ Simple analysis to obtain: speed-up, efficiency, scaled speed-up, scaled
efficiency, isoefficiency function, memory size limited speed-up, etc.

Krzysztof Banaś Computational Performance 9

Example

Krzysztof Banaś Computational Performance 10

Example

Krzysztof Banaś Computational Performance 11

Optimization of parallel programs

➔ To minimize execution time for parallel programs, for
distributed memory computer architectures, the following steps
should be undertaken:

 load balancing
 minimization of the total size of messages
 minimization of the number of messages (by increasing the

granularity of computations)
 avoiding network contention
 reducing the time for additional operations related to parallel

computations (e.g. redundant computations – but redundant
computations can decrease the communication volume)

 reducing system overhead (e.g. for synchronization)
 overlapping computations with communication
 optimizing single thread execution time

• including optimizing memory accesses

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11

