Analysis and modeling of Computational Performance

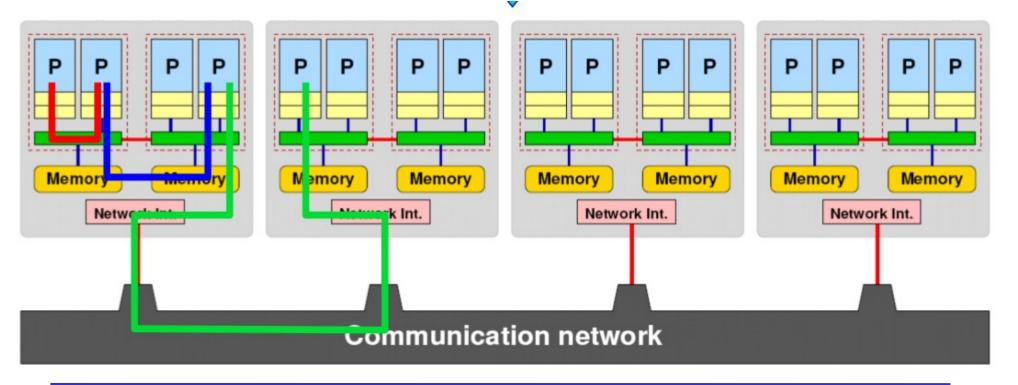
Execution time for distributed memory programs

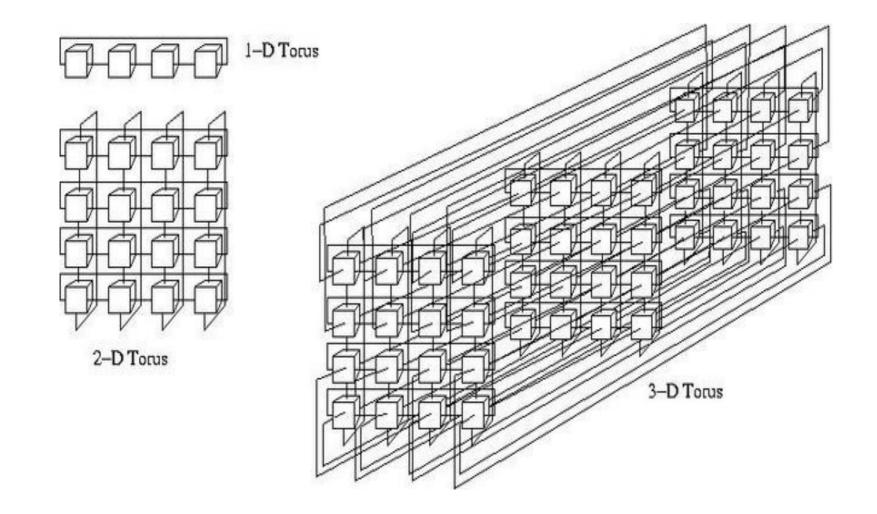
- ➤ Execution time T_i for i-th thread/process
 - simplified model with explicitly indicated times for computations (including memory accesses), communication, system overhead and idle time
 - $T_i < T_i^{comp} + T_i^{comm} + T_i^{syst} + T_i^{idle}$
- The actual execution time depends on the component times, as well as the degree to which component times overlap
 - one of optimization goals is to maximize the overlap between computation and communication times, as well as minimizing and hiding system overhead
- ➤ Total execution time
 - from the beginning of the first thread, till the end of the last thread
 - after suitably complementing with idle time:
 - $T_{\parallel} = \max_{i}(T_{i})$
 - $T_{\parallel} = \sum_{i} T_{i} / p$

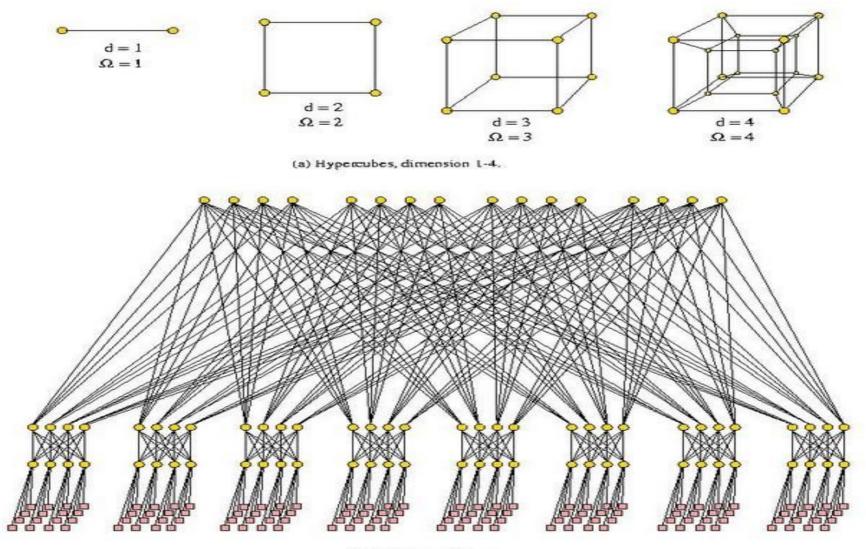
- Time for computations T_i^{comp}
- In the general context of parallel computations, that include also distributed memory processing, T_i^{comp} concerns
 operations performed by processors and memory accesses
- The total computations time for all threads/processes can be compared with the time of sequential (i.e. single thread) execution
 - $pT_{\parallel} = \sum_{i} T_{i}^{comp} = T^{seq} + T^{ovh} = T_{\parallel}(1) + T^{ovh}$ T^{ovh} – the overhead introduced by the parallel execution of the program
- The notions of parallel speed-up and parallel efficiency can be associated with the parallel overhead
 - $S(p) = T_{\parallel}(1) / T_{\parallel}(p) = pT_{\parallel}(1) / (T_{\parallel}(1) + T^{ovh}) < p$
 - $E(p) = S(p)/p = T_{\parallel}(1) / (T_{\parallel}(1) + T^{ovh}) < 1$
 - the larger overhead time the lower parallel performance

- Time for communication T_i^{comm}
- Communication time can be modelled using assumptions concerning the technology of message passing and the topology of interconnection network
 - the simplest model for store-and-forward switching technology gives the time for sending *m* bytes from one computational node to another node, separated by *l* hops:
 - $T_{i}^{\text{comm}} = t_{s} + l*(m*t_{w} + t_{h})$
 - > with: t_s startup time, t_w time for sending a single byte,
 - t_h time for single hop switching
 - for cut-through technology, the simple model gives:
 - $T_i^{\text{comm}} = t_s + m t_w + l t_h$
 - for networks with cut-through technology and small single hop times a still more simplified model can be used:
 - $T_i^{\text{comm}} = t_s + m * t_w$

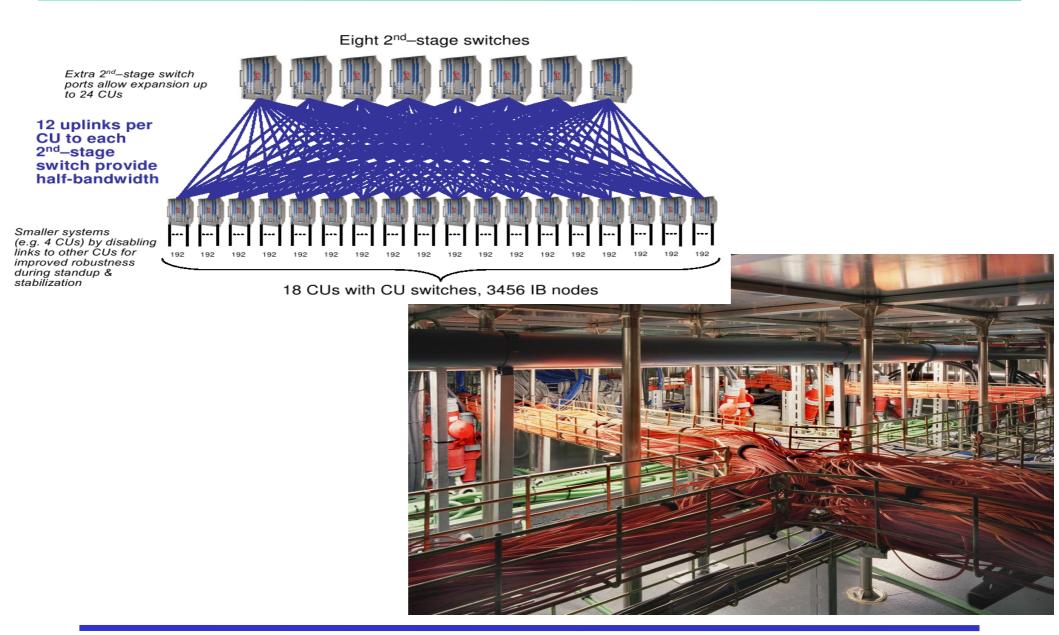
- Time for communication T_i^{comm}
- Parameters for modelling communication time can be taken from technical specifications or measured for example configurations
- For today's complex hardware environments simple models of communication time may give inaccurate results





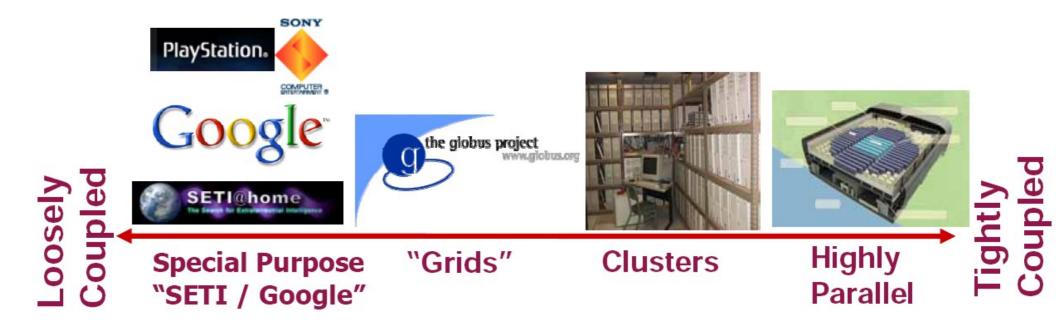


(b) A 128-way fat tree.



The role of network parameters

Loosely coupled versus tightly coupled computations



	I			IV
fully connected newtork	1	p-1	(p^2)/4	p(p-1)/2
ring	p/2	2	2	р
2D mesh	2(√p - 1)	2	√p	2(p-√p)
2D torus	2(√p / 2)	4	2√p	2р
binary tree	$2\log(p/2+1/2)$	1	1	p-1
hypercube	log p	log p	p/2	p(log p)/2

	Ring	2D Mesh	2D Torus	3D Mesh	3D Torus	Fat Tree	CCC
Average Hop Count	16	7	4	14	3	9	5.4
Maximum Hop Count	32	14	8	7	6	11	10
Average Latency	16	10.6	8	12	9	38	10.8
Bisection BW	8	16	32	32	43	21	21
Effective BW: Uniform	16	32	64	64	64	42	42
Effective BW: Hot-spot	1	1	1	1	1	1	1
Effective BW: Bit Complement	8	16	32	32	43	21	21
Effective BW: NEWS	22.4	64	64	64	64	64	64
Effective BW: Transpose	7	28	56	56	64	36.8	36.8
Effective BW: Perfect-Shuffle	8	32	64	64	64	42	42

Table 5: Comparison of performance of topologies with 64 endnodes

Collective communication times

- Communication times for collective operations on hypercube
 - One-to-all broadcast: $T_{B_{HC}} = (t_s + mt_w) \log(p)$
 - All-to_one reduction: $T_{R_{HC}} = (t_s + mt_w) \log(p)$
 - Allgather (all-to-all broadcast): $T_{AG_{HC}} = t_s \log p + mt_w (p-1)$
 - All-to-all reduction: $T_{AR_HC} = (t_s + t_w) \log p$
 - Gather and scatter: $T_{G(S)_HC} = t_s \log p + mt_w (p-1)$
 - All-to-all (full exchange): $T_{AA_HC} = (t_s + \frac{1}{2}pmt_w) \log(p)$
- For other topologies communication times are the same or longer, e.g.:
 - Allgather for 2D torus: $T_{AG_{2T}} = 2t_s (\sqrt{p} 1) + mt_w (p 1)$
 - All-to-all for 2D torus: $T_{AA_2T} = (2t_s + pmt_w)(\sqrt{p-1})$