
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Lecture 11
.

Roofline performance model

Krzysztof Banaś Computational Performance 2

Execution time modelling

➔ Execution time modelling can be done for different codes,
taking into account particular characteristics of the programs
and application domains

 in the following we will consider algorithms for which the
execution time depends mainly on:

• Tcalc – the time for performing arithmetic operations (calculations)
• Tmem – the time for memory accesses

➔ In the case of subsequent execution of separate operations, the
execution time Texec for a given algorithm can be obtained as a
sum of non-overlapping parts, e.g.:

• Texec = Tcalc + Tmem
➔ In practical computations, calculations and memory accesses are

often done concurrently so the respective times can overlap
 in the case of full overlap, execution time can be estimated as

• Texec > max(Tcalc, Tmem)

Krzysztof Banaś Computational Performance 3

Execution time modelling

➔ It is possible for a given program to estimate separately limits for
Tcalc and Tmem

 assuming the code performs No operations and Nm memory accesses:
 Tcalc cannot be shorter than the time for performing arithmetic operations

of the algorithm with the maximal performance offered by the hardware
platform

• Tcalc > No / Po
max

 – where the maximal platform performance for
operations, Po

max, is expressed in GFLOP/s
 Tmem cannot be shorter than the time for accessing data with the maximal

performance offered by the hardware platform
• Tmem > Nm / Pma

max
 – where the maximal platform performance for memory

accesses, Pma
max, is expressed in accesses/s (= 1/access_time)

• the maximal platform performance for memory accesses can also be
expressed in GB/s and denoted by PmB

max

• then: Tmem > (Nm *size_of_data) / PmB
max = NmB / PmB

max

Krzysztof Banaś Computational Performance 4

Execution time modelling

➔ The analysis can be further extended to take into account cache memories:
 assuming the code transfers NcB bytes from a given cache memory
 given the maximal transfer rate PcB

max

 the transfer time Tcache cannot be shorter than NcB / PcB
max

➔ Finally the execution time can be estimated as longer than any of the separate
limiting times:

 for arithmetic (floating point) operations No / Po
max

 for DRAM memory accesses NmB / PmB
max

 for cache accesses NcB / PcB
max (estimated for each cache level)

 Texec > max(No / Po
max, NmB / PmB

max, Nc1B / Pc1B
max, Nc2B / Pc2B

max, ...)
➔ Given the relation: Texec = No / P, where P is the performance in GFLOPS

 one can obtain the limit for the performance P given by:

• P = No / Texec < No / max(No / Po
max, NmB / PmB

max, Nc1B / Pc1B
max, Nc2B / Pc2B

max, ...)

Krzysztof Banaś Computational Performance 5

Execution time modelling

➔ Performance modelling using execution time limits can be used
to assess the actual execution time and possible optimizations

 which of the limiting times is the longest?
 can we decrease this times

• for the limiting time used for arithmetic operations not much can be
gained – the number of floating point operations is usually
determined by the performed algorithm

• for the limiting times related to memory and cache accesses, quite
often it is possible to decrease the amount of data transferred, e.g. by
some code reorganisation or modifications to data structures

 how far the actual execution time is from the limiting times i.e. the
limits imposed by the maximal performances (i.e. hardware)?

 is their any room for improvement?
 in which direction the further optimizations should go?

• diminishing the amount of cache and memory transfers?
• optimizing pipeline processing and cache and memory transfers?

Krzysztof Banaś Computational Performance 6

Execution time modelling

➔ As an alternative to execution time considerations, another form of
performance modelling, based on maximal performances possible to
obtain for a given hardware, can be used

➔ The analysis, most often, is performed only for arithmetic operations
and DRAM memory accesses

➔ The goal is to estimate the maximal performance in Gflop/s possible
to obtain for a given code and a given hardware and to represent it
graphically

➔ Given the graphic representation of maximal possible performances,
the actual performance can be represented on the graph and the same
questions posed:

 how far the actual performance is from the limiting performance i.e. the
limit imposed by the hardware?

 is their any room for improvement?
 in which direction the further optimizations should go?

Krzysztof Banaś Computational Performance 7

Execution time modelling

➔ In order to create unified graphical representation of maximal
performance possible to obtain on a given hardware, the notion
of arithmetic intensity is introduced

 for a given algorithm, its arithmetic intensity is the ratio of the
number of operations to the number of memory accesses
• spma = No / Nm [flop/access]

➢ spmB = No / (Nm*size_of_data) [flop/B]
 given arithmetic intensity, execution time can be estimated as

• Texec > max(No / Po
max

 , No / (spma* Pma
max))

 moreover, using the equation for the actual performance
P = No / Texec < No / max(No / Po

max, No / (spma* Pma
max)

one finally arrives at the expression limiting the actual performance
P < min(Po

max
 , spmB* PmB

max)

Krzysztof Banaś Computational Performance 8

Execution time modelling

➔ One can arrive at the expression limiting the actual performance of given
computations directly:

 the performance must be lower than the maximal performance of the hardware:
P < Po

max

 moreover the performance, expressed in the number of operations performed in
a given time, in the case where the execution pipelines can process only the
number of operations for which the data have been transferred from the
memory, can be limited by:

• P = number_of_operations/execution_time
 = number_of_operations/number_of_transferred_data_items *
 number_of_transferred_data_items/execution_time
 = spma * performance_of_memory_transfers
 < spma * maximal_performance_of_memory_transfers

 taking into account that the actual performance is lower than any of the limits
(again assuming that operations and accesses are performed concurrently)
leads to the final formula for limiting the actual performance:

P < min(Po
max

 , spma* Pma
max) = min(Po

max
 , spmB* PmB

max)

Krzysztof Banaś Computational Performance 9

Execution time modelling

➔ The expression
P < min(Po

max
 , spmB* PmB

max)
is the basis for the so called roofline performance model

 the actual performance of the code on a given hardware is bounded by
the performance obtained from the roofline model Pr

• P < Pr = min(Po
max

 , spmB* PmB
max) (less often =min(Po

max,spma*Pma
max))

 the diagram presenting Pr as the function of spmB (less often spma) is the so
called roofline diagram

• the diagram for a given hardware platform consist of two lines:
➢ Po

max - a horizontal line corresponding to the maximal performance
of processor floating point pipelines

➢ spmB* PmB
max - a sloping line corresponding to the maximal DRAM

memory throughput
➢ the limiting performance can be found for any code, given its

arithmetic intensity spmB (less often spma)

Krzysztof Banaś Computational Performance 10

Execution time modelling

➔ The meaning of the expression
P < min(Po

max
 , spmB* PmB

max)
and the roofline diagram is that the performance possible to obtain
for a given code on a given hardware platform depends on the
value of arithmetic intensity

 for the programs with low arithmetic intensity, their performance is
memory bound

• the processor cannot use its full processing power of pipelines, the
pipelines wait for data from memory

➢ the performance is determined by the rate at which data arrives
to processor, the small number of arithmetic operations
(specified by spmB) is done immediately, concurrently with the
transfers of data for next operations, performed at full speed

 for the programs with high arithmetic intensity, their performance is
processor bound

• the processor uses its full processing power, the data transferred
concurrently from memory is always ready for processing

Krzysztof Banaś Computational Performance 11

Roofline performance model

➔ The diagram of roofline
performance model for an
example platform

 peak performances are obtained
either from hardware
characteristics or from micro-
benchmarks

 algorithms (kernels) are
characterized only by its
arithmetic intensity

 the diagram shows the maximum
available performance on the
platform for a kernel with a given
arithmetic intensity

➔ The, so called, "ridge point" on the roofline diagram is an important platform
characteristics showing the, so called, machine balance – the limiting arithmetic
intensity above which the maximum processing performance can be obtained

Krzysztof Banaś Computational Performance 12

Roofline performance model

➔ The simple roofline performance model can be extended or
modified in many ways:

 theoretical or experimental (benchmark) performances can be used for
drawing limiting lines

 additional lines can be added to show the available platform potential
in different situations

 for processing power it can include lines for
• utilization of vector (SIMD) capabilities, proper utilization of pipeline

processing (ILP – instruction level parallelism), utilization of special
hardware capabilities (e.g. FMA – fused multiply-add)

 for memory performance it can include
• utilization of hardware prefetching, speculative execution, NUMA affinity
• there are special extensions for the, so called, cache aware roofline model

 the most difficult in the effective use of the roofline model is the
estimation of program arithmetic intensity for complex codes with
sophisticated data structures and memory access patterns

Krzysztof Banaś Computational Performance 13

Roofline performance model

Krzysztof Banaś Computational Performance 14

Roofline performance model

➔ How to obtain limiting lines for the roofline diagram of a given
platform

 separate diagrams can be constructed for single thread and
multithreaded applications

 for processing power in Gflop/s one can use:
• theoretical estimates – number of operations per cycle for a single

core * frequency in GHz [* number of cores]
• results of microbenchmarks, such as e.g. matrix-matrix

multiplication
• results of performance tests, such as e.g. Linpack

 for memory throughput
• theoretical estimates – based on processor, bus and memory

modules characterization
• results of microbenchmarks – for different memory access patterns
• results of performance tests, such as e.g. STREAM (which can be

also classified as microbenchmark, due to its simplicity)

Krzysztof Banaś Computational Performance 15

Arithmetic intensity

➔ Different kinds of algorithms are characterized by typical
arithmetic intensities

 given the dominating algorithm in the program, one can
predict, based on the algorithm's arithmetic intensity, the
actual performance of the program for a given platform and
select platforms best suited for the program execution

Krzysztof Banaś Computational Performance 16

Arithmetic intensity

➔ An example: matrix-vector product for dense matrices
 for(i = 0; i < n, i++){
 for(j = 0; j < n; j++) {
 y[i] += a[i*n+j] * x[j];
 } }

 first obvious optimization (must be considered since will be done by any
optimizing compiler)

 for(i = 0; i < n, i++){
 temp = 0.0;
 for(j = 0; j < n; j++) {
 temp += a[i*n+j] * x[j];

 }
 y[i] = temp;
}

 the number of DRAM memory accesses based on a simple analysis of
the source code – 2 per iteration (+ n accesses to y)

Krzysztof Banaś Computational Performance 17

Arithmetic intensity

➔ An example: matrix-vector product for dense matrices
 for(i = 0; i < n, i++){
 for(j = 0; j < n; j++) {
 y[i] += a[i*n+j] * x[j];
 } }

 the number of operations No is assumed to be always the same
• No = 2*n*n

 the simple analysis based on the source code lead to the estimate of the
number of bytes loaded from memory

• l = (2*n*n + n) * size_of_data
 the simple analysis does not take into account possible optimizations

(manual or automatic, software or hardware)
• one of optimizations might be the effective use of cache memory
• in the ideal case of large enough cache the matrix a and the vector x

are loaded from memory only once
• hence the total number of bytes loaded from memory is

➢ l = (n*n + 2*n) * size_of_data

Krzysztof Banaś Computational Performance 18

Arithmetic intensity

➔ An example: matrix-vector
product for dense matrices
 for(i = 0; i < n, i++){
 for(j = 0; j < n; j++) {
 y[i] += a[i*n+j] * x[j];
 } }

 calculating spmB (for double
precision computations)

• original analysis
➢ spmB = 1 / (8 + O(1/n))

• theoretical ideal
➢ spmB = 1 / (4 + O(1/n))

• register blocking
➢ spmB = 1 / (6 + O(1/n))

➔ register blocking optimization

for(i = 0; i < n, i+=2){
 ty0 = 0.0;
 ty1 = 0.0;
 for(j = 0; j < n; j+=2) {
 tx0 = x[j];
 tx1 = x[j+1];
 ty0 += a[i*n+j] * tx0;
 ty0 += a[i*n+j+1] * tx1;
 ty1 += a[(i+1)*n+j] * tx0;
 ty1 += a[(i+1)*n+j+1] * tx1;
 }
 y[i] = ty0;
 y[i+1] = ty1;

 }

Krzysztof Banaś Computational Performance 19

Arithmetic intensity

➔ Implementation horror – strided memory accesses to a
 for(j = 0; j < n; j++) {
 for(i = 0; i < n, i++){
 y[i] += a[i*n+j] * x[j];

 } }
 for each iteration of inner loop an element of a is accessed, separated

by n elements from the elements accessed in the previous and the next
iterations, so new cache line must be loaded from memory for each
iteration (no spatial and temporal locality)

 when the next element in cache line is accessed, the line is no longer
in any cache (for sufficiently large n)

 the number of bytes loaded from memory is more than
n*n*size_of_cache_line instead of less than 2*n*n*size_of_data

 arithmetic intensity is
• spmB < 2 / size_of_cache_line (usually spmB < 2/64 B)

 the performance is horrible

Krzysztof Banaś Computational Performance 20

Roofline performance model

➔ Roofline performance model can be used to estimate how far from
the theoretical maximum the performance of a real program is

 arithmetic intensity is used to position the code on the horizontal
axis and the actual performance is put on the vertical line at that
point

 the distance from the actual performance to the limiting line shows
how much can be possibly gained by optimization

• the diagram allows for fast estimation of the ratio of the actual
performance to the theoretical peak achieved by a given code

• the possible optimizations of the code can include modifications that
increase the arithmetic intensity, moving the code to the region with a
higher performance bound

 to reliably estimate the arithmetic intensity, the investigations of the
real number of memory accesses to different levels of memory
hierarchy should be done

• one can use assembly code inspection, hardware counters and profilers
that estimate the number of memory accesses (cache misses, etc.)

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20

