
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Lecture 10

Single node performance optimization



Krzysztof Banaś Computational Performance 2

Software optimization

➔ Software optimization can have several goals:
 minimization of execution time

• the only one we are interested in, further called just optimization
 minimization of memory footprint
 other requirements, often depending on the particular software 

type or domain of application
➔ Optimization can be performed by different means at different 

stages of software development
 by properly choosing algorithms and data structures while 

designing codes
• depends on the domain of application

 by proper implementation at the stage of source code creation
• the main concern today is exploitation of parallel capabilities
• even scalable software should have high single node performance

 by using optimizing compiler
 by the use of hardware designed for performance



Krzysztof Banaś Computational Performance 3

Software optimization

➔ Software optimization is often blamed for being an obstacle for 
proper code development

 Donald Knuth: "“Premature optimization is the root of all evil”
• but the full quote includes “The real problem is that programmers have 

spent far too much time worrying about efficiency in the wrong 
places and at the wrong times; ..."

 Performance optimization have to be done for the code that works
• however, in order to give optimization a chance to improve the 

performance, the code has to be designed from the beginning with the 
future performance optimization in mind

 Often employed strategy
• predict the places most important from the performance point of view
• separate the related code, create working version of the program
• perform optimization, by removing "bottlenecks"

➢ bottleneck is a place that cause performance degradation for a 
particular code or even particular case of input data



Krzysztof Banaś Computational Performance 4

Software optimization



Krzysztof Banaś Computational Performance 5

Software optimization

➔ The prediction of places most important from the performance 
point of view can be based on the analysis of the number of 
instructions and memory accesses done in a given part of the code

 the parts of the code with the highest percentage of expected 
execution time are called "hot spots"

 optimizing "hot spots" may be the most effective way for 
performance improvement

 "hot spots" often become performance "bottlenecks"
• it is also possible that a bottleneck appears in a place where relatively 

few operations are performed but these operations are (or become in 
certain circumstances) extremely slow

➢ e.g. swapping or other secondary storage (hard disk or SSD) access, 
slow network connection, etc.

 we will be mainly concerned with "hot spot" optimization, but will 
keep in mind that code profiling and bottleneck discovery should be 
the first step in optimization for a particular code 



Krzysztof Banaś Computational Performance 6

Software optimization

➔ The optimization should concern parts of the code most 
important from the performance point of view

 "hot spots" can be identified through algorithm and source code 
analysis

 "bottlenecks" can be found by profiling 
➔ After separating the code related to the performance, different 

actions can be performed:
 a proper high performance library can be found that provides 

functions necessary for code implementation
• e.g. many linear algebra packages, with LAPACK being a 

prominent example, are successfully used in numerous programs
• using libraries creates dependencies that may become problematic 

during code evolution
 optimization can be performed for the code 

• the optimization usually depends on target execution environment 
and hardware, creating less portable code



Krzysztof Banaś Computational Performance 7

Software optimization
➔ How to optimize a part of the code:

 use optimizing compiler
 perform manual optimization

• contemporary optimizing compilers are doing their job very well
• it is difficult to obtain by changing the source the same effect as 

by the use of an optimizing compiler
➢ without optimization options compilers often produce 

unnecessarily slow code (e.g. for debugging purposes)
• the best way for manual optimization is to apply specific 

techniques that help compilers to produce more effective code
➢ allow for reducing the number of operations, effectively using 

different instruction pipelines, removing dependencies, 
choosing proper functions and instructions, vectorizing code, 
optimally use memory hierarchy

 use a different programming language, designed for 
performance

• eventually employ assembler language



Krzysztof Banaś Computational Performance 8

Single node performance optimization

➔ Summary of techniques, important points, pitfalls to avoid
 increase data locality and optimize memory access patterns

• for reducing the number of memory accesses and better cache utilization
➢ use e.g. cache blocking, register blocking
➢ minimize the number of TLB misses

• for better use of NUMA memories 
➢ use proper data placement together with thread affinity control

 avoid memory contention (mapping different data to the same cache 
line, cache block, memory bank, etc.)

• array sizes being the power of two
➢ use padding

• avoid false sharing
 reduce pipeline stalls, caused e.g. by

• data dependencies
• indirect addressing
• function calls, conditional statements (especially inside loops)



Krzysztof Banaś Computational Performance 9

Single node performance optimization

➔ Summary of techniques, important points, pitfalls to avoid
 allow optimizing compilers to work efficiently

• remove aliases 
➢ inform compilers using suitable options or directives

• allow for vectorization (remove dependencies)
 use special memory allocation with proper alignment 
 perform classical optimizations that are not done by the compiler

• reduce the number of operations in the algorithm, increase locality, 
etc.

• especially when the task is too complex for the compiler
 reduce system overhead when possible

• do not allow for major page faults
 allow hardware to effectively employ branch prediction, hardware 

prefetching, hardware multithreading, out-of-order execution, etc.
• when necessary use software prefetching

 use compiler intrinsics or assembly code



Krzysztof Banaś Computational Performance 10

Software optimization

➔ Steps in practical software optimization process
 choose proper algorithm (with future performance in mind)
 implement for functional requirements

• and possibly some, other than performance, non-functional requirements 
(safety, security, reliability etc.)

 compile with proper optimization options switched on and create 
execution profile and identify performance bottlenecks

 use high performance library routines for bottlenecks
• if exist and their use does not interfere with other code development 

goals and limitations (e.g. required independence of external libraries)
 manually optimize parts of the code related to performance 

• always check the effects of modifications using different compilers and 
compiler options – inspect assembler and test execution time

 use different language for kernel implementation
• eventually employ assembler intrinsics or write assembly code

 test the final performance – use profilers, hardware counters, etc.
• compare with the peak performance of the executing hardware


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

