
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Lecture 10

Single node performance optimization



Krzysztof Banaś Computational Performance 2

Software optimization

➔ Software optimization can have several goals:
 minimization of execution time

• the only one we are interested in, further called just optimization
 minimization of memory footprint
 other requirements, often depending on the particular software 

type or domain of application
➔ Optimization can be performed by different means at different 

stages of software development
 by properly choosing algorithms and data structures while 

designing codes
• depends on the domain of application

 by proper implementation at the stage of source code creation
• the main concern today is exploitation of parallel capabilities
• even scalable software should have high single node performance

 by using optimizing compiler
 by the use of hardware designed for performance



Krzysztof Banaś Computational Performance 3

Software optimization

➔ Software optimization is often blamed for being an obstacle for 
proper code development

 Donald Knuth: "“Premature optimization is the root of all evil”
• but the full quote includes “The real problem is that programmers have 

spent far too much time worrying about efficiency in the wrong 
places and at the wrong times; ..."

 Performance optimization have to be done for the code that works
• however, in order to give optimization a chance to improve the 

performance, the code has to be designed from the beginning with the 
future performance optimization in mind

 Often employed strategy
• predict the places most important from the performance point of view
• separate the related code, create working version of the program
• perform optimization, by removing "bottlenecks"

➢ bottleneck is a place that cause performance degradation for a 
particular code or even particular case of input data



Krzysztof Banaś Computational Performance 4

Software optimization



Krzysztof Banaś Computational Performance 5

Software optimization

➔ The prediction of places most important from the performance 
point of view can be based on the analysis of the number of 
instructions and memory accesses done in a given part of the code

 the parts of the code with the highest percentage of expected 
execution time are called "hot spots"

 optimizing "hot spots" may be the most effective way for 
performance improvement

 "hot spots" often become performance "bottlenecks"
• it is also possible that a bottleneck appears in a place where relatively 

few operations are performed but these operations are (or become in 
certain circumstances) extremely slow

➢ e.g. swapping or other secondary storage (hard disk or SSD) access, 
slow network connection, etc.

 we will be mainly concerned with "hot spot" optimization, but will 
keep in mind that code profiling and bottleneck discovery should be 
the first step in optimization for a particular code 



Krzysztof Banaś Computational Performance 6

Software optimization

➔ The optimization should concern parts of the code most 
important from the performance point of view

 "hot spots" can be identified through algorithm and source code 
analysis

 "bottlenecks" can be found by profiling 
➔ After separating the code related to the performance, different 

actions can be performed:
 a proper high performance library can be found that provides 

functions necessary for code implementation
• e.g. many linear algebra packages, with LAPACK being a 

prominent example, are successfully used in numerous programs
• using libraries creates dependencies that may become problematic 

during code evolution
 optimization can be performed for the code 

• the optimization usually depends on target execution environment 
and hardware, creating less portable code



Krzysztof Banaś Computational Performance 7

Software optimization
➔ How to optimize a part of the code:

 use optimizing compiler
 perform manual optimization

• contemporary optimizing compilers are doing their job very well
• it is difficult to obtain by changing the source the same effect as 

by the use of an optimizing compiler
➢ without optimization options compilers often produce 

unnecessarily slow code (e.g. for debugging purposes)
• the best way for manual optimization is to apply specific 

techniques that help compilers to produce more effective code
➢ allow for reducing the number of operations, effectively using 

different instruction pipelines, removing dependencies, 
choosing proper functions and instructions, vectorizing code, 
optimally use memory hierarchy

 use a different programming language, designed for 
performance

• eventually employ assembler language



Krzysztof Banaś Computational Performance 8

Single node performance optimization

➔ Summary of techniques, important points, pitfalls to avoid
 increase data locality and optimize memory access patterns

• for reducing the number of memory accesses and better cache utilization
➢ use e.g. cache blocking, register blocking
➢ minimize the number of TLB misses

• for better use of NUMA memories 
➢ use proper data placement together with thread affinity control

 avoid memory contention (mapping different data to the same cache 
line, cache block, memory bank, etc.)

• array sizes being the power of two
➢ use padding

• avoid false sharing
 reduce pipeline stalls, caused e.g. by

• data dependencies
• indirect addressing
• function calls, conditional statements (especially inside loops)



Krzysztof Banaś Computational Performance 9

Single node performance optimization

➔ Summary of techniques, important points, pitfalls to avoid
 allow optimizing compilers to work efficiently

• remove aliases 
➢ inform compilers using suitable options or directives

• allow for vectorization (remove dependencies)
 use special memory allocation with proper alignment 
 perform classical optimizations that are not done by the compiler

• reduce the number of operations in the algorithm, increase locality, 
etc.

• especially when the task is too complex for the compiler
 reduce system overhead when possible

• do not allow for major page faults
 allow hardware to effectively employ branch prediction, hardware 

prefetching, hardware multithreading, out-of-order execution, etc.
• when necessary use software prefetching

 use compiler intrinsics or assembly code



Krzysztof Banaś Computational Performance 10

Software optimization

➔ Steps in practical software optimization process
 choose proper algorithm (with future performance in mind)
 implement for functional requirements

• and possibly some, other than performance, non-functional requirements 
(safety, security, reliability etc.)

 compile with proper optimization options switched on and create 
execution profile and identify performance bottlenecks

 use high performance library routines for bottlenecks
• if exist and their use does not interfere with other code development 

goals and limitations (e.g. required independence of external libraries)
 manually optimize parts of the code related to performance 

• always check the effects of modifications using different compilers and 
compiler options – inspect assembler and test execution time

 use different language for kernel implementation
• eventually employ assembler intrinsics or write assembly code

 test the final performance – use profilers, hardware counters, etc.
• compare with the peak performance of the executing hardware


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

