
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Latency and throughput of memory

Krzysztof Banaś Computational Performance 2

Memory latency

➔ Latency:
 in general (recall):

• time between the stimulation and the response, between the cause
and the effect, between the beginning of operation and its end

 for memory accesses the time between issuing a memory request
and its finalization

• for reading: arrival of data
• for writing: storing data in memory

➢ complicated by cache coherence protocols (see Lecture 6)
 theoretical values based on hardware characteristics
 experimental estimates:

• very short times, impossible to measure individually
• there must be multiple accesses to measure time
• how to arrange multiple accesses so that the average access time

corresponds to a single separate memory access
➢ how to eliminate the effects of all latency hiding techniques

Krzysztof Banaś Computational Performance 3

Memory latency
➔ Typical loop:

.L5:
addsd 0(%rbp,%rdx), %xmm7
addq $8, %rdx
cmpq $80000000, %rdx
movsd %xmm7, (%rsp)
jne .L5

 in each iteration:
• time for arithmetic operations: several cycles
• time for DRAM memory accesses: hundreds of cycles

➔ Two mechanisms for latency hiding:
 cache memories
 prefetching (hardware and software)

• e.g. for the loop above
addsd 0(%rbp,%rdx), %xmm7
[prefetch data for next iteration]

• critical hardware ability to process many memory requests concurrently

Krzysztof Banaś Computational Performance 4

Memory latency

➔ How to measure latency experimentally:
 different types of accesses (depends also whether inclusive or

exclusive caches, shared or separate per core caches etc.)
• L1 (L1 hit)
• L2 (L1 miss)
• L2 from a different core (L1, L2 miss, cache coherence protocol)
• L3 (L1, L2 miss)
• L3 from a different processor (L1, L2, L3 miss, cache coherence

protocol)
• DRAM (L1, L2, L3 miss)
• other? (NUMA?)

 organization of accesses
• should not have data locality

➢ temporal – single data element accesses separated by accesses
to many other elements (to force eviction from caches)

➢ spatial – no accesses to the same cache line

Krzysztof Banaś Computational Performance 5

Memory latency

➔ How to measure latency experimentally:
 several simple strategies:

• only one array accessed
• read only accesses

➢ e.g. sum += tab[index];
• write only accesses

➢ e.g. tab[index] = data;
• read-modify-write accesses:

➢ e.g. tab[index]++;
• strided accesses:

➢ e.g. tab[index]++; index+= stride;
• random accesses:

➢ e.g. index = random_cache_line*cache_line_size; tab[index]++;
• pointer chasing:

➢ e.g. index = tab[index];

Krzysztof Banaś Computational Performance 6

Memory throughput (bandwidth)

➔ The maximal transfer rate between processor and a given level
of memory hierarchy

➔ Should use all available latency hiding mechanisms (except
caches closer to pipelines and temporal locality):

 prefetching (hardware and may be software)
 concurrency (including multithreading)

• at all levels – memory controller, buses, DRAM modules
➢ pipelining, multi-banking, non-blocking, etc.

➔ Theoretical throughput (bandwidth)
 based on hardware characteristics

➔ Experimental estimates:
 massive transfers
 many independent memory requests

• maximizing concurrency
• multithreading for accesses to shared resources

Krzysztof Banaś Computational Performance 7

Memory throughput (bandwidth)

➔ How to measure throughput experimentally:
 massive transfer

• array(s) fitting in the given memory level
• multiple repetitions

➢ accesses to the same element must be from the tested memory
level – separated by sufficient number of accesses to different
elements to evict from levels of memory closer to the core

 spatial locality
• stride 1, full exploitation of the content of cache lines

 many independent memory requests
• for different cache lines

 number_of_accesses * sizeof(data) / execution_time
• number of accesses from source code (checked with assembly code)

➢ effective accesses – data used in the code
» not the data transferred by hardware, due e.g. to prefetching
» the use of hardware counters can be misleading

Krzysztof Banaś Computational Performance 8

Little's law for memory accesses

➔ Little's law (recall)
 the average number L of customers in a stationary system is equal

to the average effective arrival rate λ multiplied by the average time
W that a customer spends in the system: L = λ W

 for memory access requests:
• L – the number of requests processed concurrently [B]

➢ should be measured by the number of cache lines
• λ – the throughput [GB/s]
• W – the time to process each of the memory requests [ns]

 in order to maximize the throughput, λ = L / W, i.e. to keep it as
close as possible to the theoretical maximum, given the time W that
depends on hardware and operating system:
• maximize the number of requests processed concurrently L

➢ sufficient number of independent requests in the code

Krzysztof Banaś Computational Performance 9

Little's law for memory accesses

Krzysztof Banaś Computational Performance 10

Memory throughput

➔ Memory throughput factors:
 hardware

• memory technology (e.g. DDR4)
• number of banks, ranks etc.
• number of channels
• the width of a single channel (bus, usually 64 bits)
• processor's memory system capabilities (often expressed as

the number of (usually 64-bit) transactions per second)
 software

• number of generated cache line accesses
➢ several arrays or proper loop unrolling for a single array

• spatial locality of accesses
➢ full use of the whole cache hierarchy

• vectorization of accesses (e.g. -march=core-avx2)
• alignment of arrays in memory (e.g. posix_memalign(...))

Krzysztof Banaś Computational Performance 11

Latency and throughput

Krzysztof Banaś Computational Performance 12

Example theoretical cache parameters

Krzysztof Banaś Computational Performance 13

Memory performance modelling

➔ AMAT – often used memory performance model
 AMAT – average memory access time

• hit access times – L1, L2, L3
• miss penalty times – for L1, L2, L3
• general formula

➢ AMAT = %L1_hit * L1_hit_time + %L1_miss * L1_miss_penalty
• recursively

➢ L1_miss_penalty = %L2_hit * L2_hit_time + %L2_miss * L2_miss_penalty
➢ L2_miss_penalty = %L3_hit * L3_hit_time + %L3_miss * DRAM_access_time

• the model does not take into account
➢ concurrency – essential for high throughput

» unless different times are used for different types of accesses
➢ cache coherence – important for multithreading
➢ NUMA memory
➢ address translation

Krzysztof Banaś Computational Performance 14

Paged virtual memory and caches

Krzysztof Banaś Computational Performance 15

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15

