
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Memory accesses – cache memory

Krzysztof Banaś Computational Performance 2

Memory accesses – virtual memory
➔ Typical memory instruction:

 movsd %xmm0, 24(%rsp)
➔ Arguments in:

 registers
 main memory (primary storage)

• address calculated based on the values
stored in registers

➔ Addresses
 in virtual address space

• size: 2^n-1, n = 16, 32 or 64
• n – characteristic to processor and

operating system
 translated to physical addresses

• paging – the most popular mechanism
• segments, uniform, ...

Krzysztof Banaś Computational Performance 3

Paged virtual memory
➔ Paged virtual memory

 virtual address space of the process divided into (virtual) pages
• page size variable, usually 4 kb
• physical memory divided into frames (physical pages) of the same

size as virtual memory pages
• each virtual address divided into page number and address within

page (example: 32-bit address)
• virtual addresses are translated into physical addresses

Krzysztof Banaś Computational Performance 4

Paged virtual memory

➔ Paged virtual memory
 address translation:

• each page associated with the entry in the page table
• page table specifies whether the page has assigned physical memory

frame with its data
➢ if yes, page table contains physical address of virtual page memory

Krzysztof Banaś Computational Performance 5

Paged virtual memory

➔ Paging (page swapping)
 virtual address space usually

larger than physical memory
• only fraction of all pages

from virtual address space
in physical memory

• some pages may be stored
in secondary storage (HDD,
SDD)

• operating system manages
the storage of pages

➢ when accessed page not in physical DRAM memory – page fault
» minor page fault – virtual page has not yet assigned physical

page – possibly small overhead (no HDD or SDD access)
» major page fault – virtual page moved to secondary storage –

page swap between secondary and primary storage large
overhead

Krzysztof Banaś Computational Performance 6

Paged virtual memory

➔ Page table
 page table can be large – millions of pages (e.g. 2^(n-12), n=32,64)

• stored in primary memory and possibly in secondary memory
 to speed up access to

page table it has a
separate cache – TLB

• TLB – translation
lookaside buffer

• within core
• up to several hundred

entries
 there may be many

page tables managed by
the operating system
(for different processes,
segments, etc.)

Krzysztof Banaś Computational Performance 7

Memory access

➔ Instruction with virtual address
 address translation

• TLB look-up
➢ TLB hit -> physical page address with data
➢ TLB miss -> page walk – the search in memory

» entry found, physical page assigned -> TLB update, memory
access retry, TLB hit, physical page address with data

» entry found, no physical page assigned -> page fault (both
minor and major faults lead to page table and TLB update)

 physical memory access
• caches, cache coherence protocol, DRAM

 some processors perform concurrently (at least partially) address
translation and L1 cache access

➔ Thrashing
 frequent page swaps due to many major page faults
 must be avoided (any major page fault should be avoided)

Krzysztof Banaś Computational Performance 8

Memory wall

➔ Typical memory instruction: movsd %xmm0, 24(%rsp)
➔ Arguments:

 registers
• operating at the speed of processor core

 main memory (primary storage)
• slow DRAM modules

Krzysztof Banaś Computational Performance 9

Memory hierarchy

➔ Solution to "memory wall" -> memory hierarchy

Krzysztof Banaś Computational Performance 10

Cache hierarchy

➔ Cache levels: L1, L2, L3, (L4?)
➔ Memory access:

 memory request
• L1 hit or ...
• L1 miss

➢ L2 hit (L1 cache line replacement) or ...
➢ L2 miss

» etc. ... and finally:
» DRAM access (cache lines replacement)

➔ Cache effectiveness
 locality of accesses

• temporal – the same element accessed several times in a short
period of time

• spatial – several close in memory elements accessed in a short
period of time

Krzysztof Banaś Computational Performance 11

Cache organization

➔ Cache organization:
 cache size
 cache line size
 cache associativity

Krzysztof Banaś Computational Performance 12

Mapping of memory blocks to cache lines

<- Direct mapped cache
• B elements of array a in one line
• each block in memory has
 exactly one corresponding
 cache line

Fully associative cache ->
• B elements of array a in one line
• each block in memory can
 be stored in any cache line

Krzysztof Banaś Computational Performance 13

4-way set associative cache

➔ Cache line – B variables
➔ First B elements of array a in one of 4 lines in a set
➔ The next B elements in one of 4 lines of the next set
➔ etc. , at certain moment one of cache lines must be replaced

Krzysztof Banaś Computational Performance 14

➔ Compulsory misses (aka cold start misses)
 First access to a block

➔ Capacity misses
 Due to finite cache size
 A replaced block is later accessed again

➔ Conflict misses (aka collision misses) - In a non-fully associative cache
 Due to competition for entries in a set. Would not occur in a fully associative

cache of the same total size
➔ Coherency misses

 Due to cache flushes to keep multiple caches coherent in a mutliprocessor

Cache misses

Krzysztof Banaś Computational Performance 15

Cache performance

Krzysztof Banaś Computational Performance 16

Cache organization

➔ Cache organization details:
 inclusive vs exclusive

• e.g. victim cache
 harvard architecture
 cache coherence
 pipelining
 non-blocking
 multi banking
 line replacement strategies:

• random
• FIFO
• LRU (least recently used)
• LFU (least frequently used)
• more complex algorithms

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16

