
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Review of computer architectures 2:
Latency and throughput

Krzysztof Banaś Computational Performance 2

Performance equation

CPU time = number of seconds / program =
number of seconds / cycle *
number of cycles / instruction *
number of instructions / program

➔ Problems:
 number of instructions – different compilers produce

different instructions for the same source code (i.e. the same
number of effectively performed source code operations)

 clock cycles – different possible frequencies depending on
conditions, e.g. energy saving modes of operation

 CPI – number of cycles per instruction
• how to determine CPI in order to apply the performance

equation?

Krzysztof Banaś Computational Performance 3

CPI – cycles per instruction measure

➔ Sequential processing
 1 cycle per phase, k phases
 k cycles per instruction
 CPI=k

➔ Pipelining
 CPI=k cannot be used to

calculate CPU time
 for long instruction sequences

better value is the average
number of cycles between
subsequent retired instructions

• CPI = 1 – for the example
➔ Normally applied – the average CPI

 CPI = total number of cycles / total number of instructions
 easy to measure, difficult to obtain theoretically

Krzysztof Banaś Computational Performance 4

Contemporary processors/cores

➔ Further enhancements of
instruction processing

 superscalar processors/cores
• multiple functional units
• multiple pipelines
• CPI<1

 vector capabilities
• vector registers
• SIMD instructions
• CPI<1

 cache memories
• including caches for virtual

memory page tables

+ deeper pipelines, branch prediction, out of order execution,
 prefetchnig, speculative execution, hardware multithreading etc.

Krzysztof Banaś Computational Performance 5

Performance related characteristics

➔ Latency
 general:

• time between the stimulation and the response, between the cause
and the effect, between the beginning of operation and its end

➢ in some situations equivalent to "response time"
 specific for instruction processing:

• time of pipeline processing (excluding fetching, decoding, etc.)
• experimental: number of cycles after retiring an instruction till

retiring the next instruction, related to the previous one by data
dependence

➢ for long sequences of such instructions, the performance (the
average CPI) will be related to instruction latency

for(i=0;i<1000000;i++)
a = 1.000001*a;

}

Krzysztof Banaś Computational Performance 6

Performance related characteristics

➔ Throughput
 often related to the maximal capacity of the performing hardware

• "bandwidth"
• for instruction processing:

➢ the maximal number of retired instructions per time unit or
clock cycle

➢ may be different for different kinds of instructions
» depends on the number of specific pipelines

 the related measure – IPC
• the number of instructions per cycle

➢ maximal – theoretical peak performance
➢ as the average quantity:

» IPC = (number of instructions) / (number of clock cycles)
» IPC = 1 / CPI
» characterizes the actual performance of execution

Krzysztof Banaś Computational Performance 7

Latency and throughput

Krzysztof Banaś Computational Performance 8

Performance measures

➔ MIPS
 number of instructions per second (in millions)
 MIPS = IPC * frequency [MHz]
 historical meaning only

• does not characterize the performance for real workloads with
different combinations of various instructions

➔ GFLOP/s
 number of floating point instructions (FLOPs) per second (in

billions - GFLOP/s)
 relevant for "number crunching"

• applications where floating point operations dominate
 theoretical peak performance:

• GFLOP/s = IPC (for floating point operations) * frequency [GHz]
 actual performance

• GFLOP/s = the number of FLOPs performed / execution time

Krzysztof Banaś Computational Performance 9

Little's law

➔ Little's law (from queuing theory)
 the average number L of customers in a stationary system is equal to

the average effective arrival rate λ multiplied by the average time W
that a customer spends in the system: L = λ W
• the arrival rate is assumed to be equal to departure rate

 for superscalar superpipelined instruction processing:
• L – the number of instructions processed concurrently by a core
• λ – the number of instructions retired per cycle

➢ increases with the number of pipelines
• W – the number of cycles to process each of the instructions

 in order to maximize the throughput, IPC = λ = L / W, i.e. to keep
it as close as possible to the theoretical maximum, given the long
pipelines W, maximize the number of concurrent instructions L

➢ sufficient number of independent instructions in the code
➢ efficient fetching and decoding
➢ no stalls in the pipelines, no hazards, no data dependencies

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9

