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Performance equation

CPU time = number of seconds / program =
number of seconds / cycle *
number of cycles / instruction *
number of instructions / program  

➔ Problems:
 number of instructions – different compilers produce 

different instructions for the same source code (i.e. the same 
number of effectively performed source code operations)

 clock cycles – different possible frequencies depending on 
conditions, e.g. energy saving modes of operation

 CPI – number  of cycles per instruction 
• how to determine CPI in order to apply the performance 

equation?
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CPI – cycles per instruction measure

➔ Sequential processing
 1 cycle per phase, k phases
 k cycles per instruction
 CPI=k

➔ Pipelining
 CPI=k cannot be used to 

calculate CPU time
 for long instruction sequences 

better value is the average 
number of cycles between 
subsequent retired instructions

•  CPI = 1 – for the example 
➔ Normally applied – the average CPI 

 CPI = total number of cycles / total number of instructions
 easy to measure, difficult to obtain theoretically 
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Contemporary processors/cores

➔ Further enhancements of 
instruction processing

 superscalar processors/cores
• multiple functional units
• multiple pipelines
• CPI<1

 vector capabilities
• vector registers
• SIMD instructions
• CPI<1

 cache memories
• including caches for virtual 

memory page tables

+ deeper pipelines, branch prediction, out of order execution, 
   prefetchnig, speculative execution, hardware multithreading etc. 
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Performance related characteristics

➔ Latency
 general:

• time between the stimulation and the response, between the cause 
and the effect, between the beginning of operation and its end

➢ in some situations equivalent to "response time"
 specific for instruction processing:

• time of pipeline processing (excluding fetching, decoding, etc.)
• experimental: number of cycles after retiring an instruction till 

retiring the next instruction, related to the previous one by data 
dependence

➢ for long sequences of such instructions, the performance (the 
average CPI) will be related to instruction latency

for(i=0;i<1000000;i++)
a = 1.000001*a;

}
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Performance related characteristics

➔ Throughput
 often related to the maximal capacity of the performing hardware

• "bandwidth"
• for instruction processing:

➢ the maximal number of retired instructions per time unit or 
clock cycle

➢ may be different for different kinds of instructions
» depends on the number of specific pipelines

 the related measure – IPC
• the number of instructions per cycle

➢ maximal – theoretical peak performance
➢ as the average quantity:

» IPC = (number of instructions) / (number of clock cycles) 
» IPC = 1 / CPI
» characterizes the actual performance of execution
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Latency and throughput
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Performance measures

➔ MIPS
 number of instructions per second (in millions)
 MIPS = IPC * frequency [MHz]
 historical meaning only 

• does not characterize the performance for real workloads with 
different combinations of various instructions

➔ GFLOP/s
 number of floating point instructions (FLOPs) per second (in 

billions - GFLOP/s)
 relevant for "number crunching"

• applications where floating point operations dominate
 theoretical peak performance:

• GFLOP/s = IPC (for floating point operations) * frequency [GHz]
 actual performance

• GFLOP/s = the number of FLOPs  performed / execution time
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Little's law

➔  Little's law (from queuing theory)
 the average number L of customers in a stationary system is equal to 

the average effective arrival rate λ multiplied by the average time W 
that a customer spends in the system: L = λ W
• the arrival rate is assumed to be equal to departure rate 

 for superscalar superpipelined instruction processing:
• L – the number of instructions processed concurrently by a core
• λ – the number of instructions retired per cycle 

➢ increases with the number of pipelines
• W – the number of cycles to process each of the instructions 

 in order to maximize the throughput, IPC = λ = L / W, i.e. to keep 
it as close as possible to the theoretical maximum, given the long 
pipelines W, maximize the number of concurrent instructions L

➢ sufficient number of independent instructions in the code
➢ efficient fetching and decoding
➢ no stalls in the pipelines, no hazards, no data dependencies
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