
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Review of computer architectures 1:
Instruction processing

Krzysztof Banaś Computational Performance 2

von Neumann architecture

➔ Fundamental instructions:
 memory accesses
• reading
• writing

 arithmetic operations
 logical operations
 jumps
• unconditional
• conditional

 input/output operations
• often implemented as

memory accesses

➔ Instructions can have from 0 to 3 arguments
 registers or direct values
 memory locations with addresses stored in registers

Krzysztof Banaś Computational Performance 3

Assembly language

➔ Short review from Computer Architectures
• with x86(64) as an example

➔ Fundamental instructions
 data transfers
• mov: memory, registers, no memory-memory
• push, pop: stack operations x87 FPU

 arithmetic and logic operations
• add, sub, mul, imul, div, idiv, (fadd, fsub, fmul, fdiv) : +, -, *, /
• inc, dec, neg: ++1, --1, *=(-1)
• not, or, and, xor: ~, ||, &&, (a xor a == 0)
• cmp: comparison, result in proper bits of the status register

 control transfer (change of program counter, PC)
• jmp: unconditional jumps
• jge, je, jl, etc.: conditional jumps (branches)

➢ based on the values in suitable bits of the status register
• call, ret: used for function calls and returns

 input/output instructions
• in, out: read from, write to a port

Krzysztof Banaś Computational Performance 4

Assembly language

➔ Special instructions (related to performance optimization):
• lea – load effective address (address calculation, no memory transfer)
• prefetchw – prefetch data into cache from memory

➔ Standard registers (x86-64 64-bit mode)
 64-bit: 16 general purpose registers %rax - %r15
– frequent meaning: %rax – accumulator, %rbp (frame base pointer), %rsp

(stack pointer), etc.
 instruction pointer (RIP),
 program status register (RFLAGS)
 floating point registers: data, instruction pointer, operand pointer, etc.
 control, debug, I/O, machine specific, segment etc. special registers
– including: performance monitoring counters

 compatibility with previous modes:
– 32-bit: %eax – half of %rax, etc.
– 16-bit: %ax – half of %eax, etc.
– 8-bit: %ah, %al – halves of %ax – high and low, etc.

Krzysztof Banaś Computational Performance 5

Assembly language

➔ SIMD extensions (vector processing - MMX, SSE, AVX)
 vector registers (64-bit mode)
• 8x 64-bit MMX, 16x 128-bit XMM, 16x 256-bit YMM

 hundreds of special instructions, including:
• many types of mov instructions
• many types of arithmetic (add, sub, mul, div, etc.) instructions
• FMA (fused multiply-add) instructions
• converting, packing and unpacking instructions

➔ Address calculation:
• address = base + index*scale + disp(lacement)
• AT&T notation: disp(base,index,scale), e.g. 32(%rsp, %rax, 8)
• base and index stored in 32 or 64-bit registers
• disp and scale are direct numbers (scale=1,2,4,8)
• scale usually corresponds to the size of data in bytes

Krzysztof Banaś Computational Performance 6

Assembly language - example

➔ Source code
 for(i=0;i<num_iter;i++){
 tab_rand[i] = (double)rand()/(RAND_MAX);
 }

➔ Assembly code produced by gcc -O3 -S
.L3:
call rand
cvtsi2sd %eax, %xmm0
divsd .LC1(%rip), %xmm0
movsd %xmm0, 0(%rbp,%rbx)
addq $8, %rbx
cmpq $80000000, %rbx
jne .L3

Krzysztof Banaś Computational Performance 7

Pipelining

➔ Instruction processing
 Fetch
 Decode
 Execute
 (Memory access)
 Write-back
 (Interrupts checking)

➔ Pipelining
 k-stages
 theoretically k-times faster
 problems:
• bubbles, stalls due to hazards

➢ from 1 up to hundreds of cycles

Krzysztof Banaś Computational Performance 8

Pipelining – simple RISC design

Krzysztof Banaś Computational Performance 9

Pipelining – coding example

➔ PowerXCell processor
 Cell microarchitecture

(PlayStation3)
 two execution pipelines

Krzysztof Banaś Computational Performance 10

Pipelining – coding example

➔ Efficient use of both (0D and 1D) pipelines
 no stalls
 maximal performance – two operations completed at each cycle

007681 0D 123456 fma $118,$124,$67,$118

007681 1D 123456 lqd $79,160($53)

007682 0D 234567 fma $120,$124,$65,$120

007682 1D 234567 lqd $123,176($53)

007683 0D 345678 fma $67,$124,$67,$68

007683 1D 345678 lqd $121,192($53)

007684 0D 456789 fma $68,$124,$69,$70

007684 1D 456789 lqd $119,208($53)

007685 0D 567890 fma $65,$124,$65,$66

007685 1D 567890 lqd $117,224($53)

007686 0D 678901 fma $69,$124,$69,$72

007686 1D 678901 lqd $66,240($53)

Krzysztof Banaś Computational Performance 11

Pipelining – coding example
➔ Inefficient use of pipelines

 many stalls
 complex operations

005616 1 678901 lqd $54,5568($1)

005622 0 -----2345 rotmi $42,$54,-31

005626 0 ---67 a $42,$54,$42

005628 0 -8901 rotmai $52,$42,-1

005632 0 ---23 cgti $42,$52,0

005634 1 -4567 brz $42,.LC__88

005635 1 5678 brz $27,.LC__88

005636 0D 67 a $54,$127,$7

006244 0 ----456789 dfm $115,$115,$113

006257 0 -------7890123456789 dfm $115,$115,$44

006264 0 ------4567890123456 fscrrd $114

006277 0 ------------78 selb $113,$114,$45,$46

Krzysztof Banaś Computational Performance 12

Pipeline processing

➔ Pipeline hazards and stalls
 structural hazards
• not enough resources

 control hazards
• branches, change of PC

➢ unconditional jumps
» prefetching

➢ conditional jumps
» branch prediction

 data hazards
• dependencies

➢ bypassing data
➢ code reorganization

Krzysztof Banaś Computational Performance 13

Branches

➔ Measuring impact of branches on performance
 Branches can make up to 20% of all executed instructions
• mainly due to loops

 The negative effect of unconditional branches can be mitigated
by prefetching and out of order execution

 The negative effect of conditional branches can be mitigated
by branch prediction and speculative execution with the
example strategies:
• static prediction (often with branch delay slot)

➢ branch always taken
➢ branch never taken
➢ backward branch taken, forward branch not taken

• dynamic prediction
➢ based on the history of jumps

Krzysztof Banaś Computational Performance 14

ARMv8 architecture

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14

