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von Neumann architecture

➔ Fundamental instructions:
 memory accesses
• reading
• writing

 arithmetic operations
 logical operations
 jumps
• unconditional
• conditional

 input/output operations
• often implemented as 

memory accesses

➔ Instructions can have from 0 to 3 arguments
 registers or direct values
 memory locations with addresses stored in registers
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Assembly language

➔ Short review from Computer Architectures 
• with x86(64) as an example

➔ Fundamental instructions
 data transfers
• mov: memory, registers, no memory-memory
• push, pop: stack operations x87 FPU

 arithmetic and logic operations
• add, sub, mul, imul, div, idiv, (fadd, fsub, fmul, fdiv) : +, -, *, /
• inc, dec, neg: ++1, --1, *=(-1)
• not, or, and, xor: ~, ||, &&, (a xor a == 0)
• cmp: comparison, result in proper bits of the status register

 control transfer (change of program counter, PC)
• jmp: unconditional jumps
• jge, je, jl, etc.: conditional jumps (branches)

➢ based on the values in suitable bits of the status register
• call, ret: used for function calls and returns

 input/output instructions
• in, out: read from, write to a port
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Assembly language

➔ Special instructions (related to performance optimization):
• lea – load effective address (address calculation, no memory transfer)
• prefetchw – prefetch data into cache from memory

➔ Standard registers (x86-64 64-bit mode)
 64-bit: 16 general purpose registers %rax - %r15
– frequent meaning: %rax – accumulator, %rbp (frame base pointer),  %rsp 

(stack pointer), etc.
 instruction pointer (RIP), 
 program status register (RFLAGS)
 floating point registers: data, instruction pointer, operand pointer, etc.
 control, debug, I/O, machine specific, segment etc. special registers
– including: performance monitoring counters

 compatibility with previous modes:
– 32-bit: %eax – half of %rax, etc.
– 16-bit: %ax – half of %eax, etc. 
– 8-bit: %ah, %al – halves of %ax – high and low, etc.
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Assembly language

➔ SIMD extensions (vector processing - MMX, SSE, AVX)
 vector registers (64-bit mode)
• 8x 64-bit MMX, 16x 128-bit XMM, 16x 256-bit YMM

 hundreds of special instructions, including:
• many types of mov instructions
• many types of arithmetic (add, sub, mul, div, etc.) instructions
• FMA (fused multiply-add) instructions
• converting, packing and unpacking instructions

➔ Address calculation:
• address = base + index*scale + disp(lacement)
• AT&T notation: disp(base,index,scale), e.g. 32(%rsp, %rax, 8)
• base and index stored in 32  or 64-bit registers
• disp and scale are direct numbers (scale=1,2,4,8)
• scale usually corresponds to the size of data in bytes
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Assembly language - example

➔ Source code
  for(i=0;i<num_iter;i++){
    tab_rand[i] = (double)rand()/(RAND_MAX);
  }

➔ Assembly code produced by gcc -O3 -S 
.L3:
call rand
cvtsi2sd %eax, %xmm0
divsd .LC1(%rip), %xmm0
movsd %xmm0, 0(%rbp,%rbx)
addq $8, %rbx
cmpq $80000000, %rbx
jne .L3
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Pipelining

➔ Instruction processing
 Fetch
 Decode
 Execute
 (Memory access)
 Write-back
 (Interrupts checking)

➔ Pipelining
 k-stages
 theoretically k-times faster
 problems:
• bubbles, stalls due to hazards

➢ from 1 up to hundreds of cycles 
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Pipelining – simple RISC design
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Pipelining – coding example

➔ PowerXCell processor
 Cell microarchitecture 

(PlayStation3)
 two execution pipelines
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Pipelining – coding example

➔ Efficient use of both (0D and 1D) pipelines
 no stalls 
 maximal performance – two operations completed at each cycle

007681 0D  123456             fma         $118,$124,$67,$118

007681 1D  123456             lqd         $79,160($53)

007682 0D   234567            fma         $120,$124,$65,$120

007682 1D   234567            lqd         $123,176($53)

007683 0D    345678            fma         $67,$124,$67,$68

007683 1D    345678            lqd         $121,192($53)

007684 0D     456789           fma         $68,$124,$69,$70

007684 1D     456789           lqd         $119,208($53)

007685 0D      567890          fma         $65,$124,$65,$66

007685 1D      567890          lqd         $117,224($53)

007686 0D       678901         fma         $69,$124,$69,$72

007686 1D       678901         lqd         $66,240($53)
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Pipelining – coding example
➔ Inefficient use of pipelines

 many stalls 
 complex operations 

005616 1   678901                      lqd         $54,5568($1)

005622 0    -----2345                  rotmi       $42,$54,-31

005626 0          ---67                a           $42,$54,$42

005628 0              -8901            rotmai      $52,$42,-1

005632 0                ---23          cgti        $42,$52,0

005634 1                    -4567      brz         $42,.LC__88

005635 1                      5678     brz         $27,.LC__88

005636 0D                      67      a           $54,$127,$7

006244 0  ----456789                      dfm     $115,$115,$113

006257 0  -------7890123456789            dfm     $115,$115,$44

006264 0          ------4567890123456    fscrrd $114

006277 0                 ------------78  selb    $113,$114,$45,$46
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Pipeline processing

➔ Pipeline hazards and stalls 
 structural hazards
• not enough resources

 control hazards
• branches, change of PC

➢ unconditional jumps
» prefetching

➢ conditional jumps
» branch prediction

 data hazards
• dependencies

➢ bypassing data
➢ code reorganization
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Branches

➔ Measuring impact of branches on performance
 Branches can make up to 20% of all executed instructions 
• mainly due to loops

 The negative effect of unconditional branches can be mitigated 
by prefetching and out of order execution 

 The negative effect of conditional branches can be mitigated 
by branch prediction and speculative execution with the 
example strategies:
• static prediction (often with branch delay slot)

➢ branch always taken
➢ branch never taken
➢ backward branch taken, forward branch not taken

• dynamic prediction
➢ based on the history of jumps 
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ARMv8 architecture
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