Analysis and modeling of

Computational Performance

Krzysztof Banas Computational Performance

Computational Performance

> Performance (efficiency) is (besides correctness, reliability,
security, maintainability, user friendliness, etc.) one of the
most important software qualities

> Performance, as is understood in the current lectures, has its
main related parameter: time-to-solution (execution time)

" guideline: performance = 1/time-to-solution

> Analysis of computational performance is concerned with
elements that influence the time of program execution

> Performance modeling tries to express the execution time in
terms of mathematical formulas, using a set of theoretically
or experimentally obtained parameters

> Performance optimization finds ways to improve the
computational performance of programs and minimize its
execution time

Krzysztof Banas Computational Performance 2

Computational Performance

> In different application areas execution time depends
on many different factors:

= time for performing operations by CPUs

= time for accessing data in DRAM memory

= time for sending data over network

= time for accessing disk drives, SSDs, etc.

= time for performing transactions with databases

= time for displaying images and graphics primitives
= time for creating and displaying video frames

> In the current lectures we are concerned with programs
for which execution time depends on the three first
factors above

Krzysztof Banas Computational Performance 3

Computational Performance

> Current lectures:
* simple programs in C
* micro-benchmarks for individual system components and
simple operations

* operations on vectors and matrices — numerical linear
algebra

* hardware-software interaction
 assembly code

benchmarks

" optimization
* classical — manual and automatic by compilers
* parallel
> multithreading (CPU, GPU)
> message passing

Krzysztof Banas Computational Performance 4

Performance tools

> Execution time:

* wall clock time, elapsed time, real time — external time measure,
the most important for software users

* CPU time — time when CPU was executing program instructions
* user time — time in user mode
* system time — time in kernel mode
> Tools for measuring wall clock and CPU time
* wrist watches, stopwatches
* top utility, system monitors
* time utility in Linux
* profilers: gprof, valgrind
* hardware counters

* special performance analysis applications
> Intel VTune, Advisor, NVIDIA Visual Profiler, AMD uProf

Krzysztof Banas Computational Performance 5

Performance tools

> Intel Vtune — a complex performance analysis tool

) Jhome|Krzysztofjintel/am plxe/projects/mat mullopt - Intel VTune Am plifier =EE=]
P t Navigats e -
e & i 2 b B W E @ | welome rooége % =
& /homeskrzysztoffintel/amplxe/projects
P & 2dc_ac
P f& MOD_FEM_OpenMP_BCRS_VI_2016
I) MOD_FEM_OpenMP_CRS —
cna: a] [ene
b @ MOD_FEM_OpenMP_CRS_11.03.2016 Grouping: | Call Stack) [[a]
P & ModFEM L4 Filled Pipeline Slots Filled Pipeline Slots: Unfilled Pipeline Slot... Unfilled Pipeline Slot... =
4 ModFEM_OpenMP
3 E h o :1} t . Cloc Cl Instru... Inst... CPI CcPl MUX MUX Fun.. Sou.. Sta
cache_conilic Function Stack Total T el Retired: Refi.. Rate: Rate: Reliability: Reliability: — Bad - Bad Back-E.. Front-e.. Back-E.. Front-e.. Mod. b " 2od”
b & false_sharing Total Self Total Self Total Self inng Specul... iring Specul... Bound Bound Bound Bound
P @ integration
P & kb_opencl_01.05.2017 v | o \ s
P & mat_mul_avx P mat_mul_par 60.3% 251,... 58.8% 314,.. 0.799 0.799 (NN N 0D | [] | s | [. mat .. mat. 0x4..
P mat_mul_avx_ax8s P mat_mul 32.9% 137,.. 30.7% 164,.. 0.835 0.835 [N N B | (] | | | s | mat.. mat. ox4.. |[=
b @& mat_mul_avx_opt b 4 [MKL BLAS]@dgemm_kernel_C 4.7% 19,5 ... 9.0% 48,3... 0.404 0.404 NN DN N | [] | (] | (] | lib.. mkl 0x6..
b B mat_mul_mkl P kmp_wait_sleep_template 1.0% 4.03... 0.7% 3,50.. 1152 1152 (N D B 1] (] 1] [| [| libi... k. kmp. 0x4..
= [E mat mul opt P [vmlinux] 0.3% 1.10... 0.1% 532,.. 2.068 2.063 (N S B] s 0 [| vml.. [v... 0
& rooohs Py kmp_x86_pause 0.2%918, 0.3% 1,86... 0.493 0.493 N DN (] | | libi... k. 0x9..
& roo1ge P main 0.2%)828, ... 0.1% 310,... 2.671 2.671 (N [1]] [[mat.. main 0x4..
@ roozah b - [MKL BLAS]@dgemm_dcopy_ri 0.1% 610, ... 0.0% 134,... 4.552 4.552 (N S | [} [[lib.. mkl 0x6..
@ ro0s P [MKL BLAS]@dgemm_dcopy_d 0.1% 346, 0.0% 34,0... 10.176 10.176¢ (N N |] [[lib.. mkl 0x6..
u et_clocks_fre . . SRR o X X ib.. ml X ... [
roosge b . [MKL SERVICEl@get_clocks_fi 0.1% 226 0.1% 454,... 0.498 0.498 [[lib kI 0
& rooage Py kmp yield 0.1%3222,.. 0.1%284,.. 0.782 o0.7:2 NN IE @ (] [(] libi.. k. z L..0x9.
w_intel_memset 0.0% 178, ... 0.0% 86,0... 2.070 2.070 mat.. . 0x4..
& roosge Dy intel _
"] roo6ge] P [[vdsol] 0.0% 148,.. 0.1% 292,.. 0.507 0.507] [[vd.. [[v.. 0
b @& throughput P difftime 0.0% 140, 0.1% 326,... 0.429 0.429 (| [lib... diff... Oxa..
b [Import thunk time] 0.0% 38,0... 0.0% 68,0... 0.559 0.559 [[lib.. [Im.. 0xd..
P sched_yield 0.0% 14.0... 0.0% 18.0... 0.778 0.778] (] [(] lib... sch.. 0xd..
P [MKL BLAS]@xdgemm_par 0.0% 8.00 0.0% 0 0.000 o0.000 BN (] (| | lib.. mkl.. 0%5..
P [MKL BLAS]@dgemm_copyat 0.0% 6,00... 0.0% 0 0.000 0.000 lib.. mkl.. 0x5 ..
g _copy
Selected 1 row(s):| 100.0% 0 100.0% 0 0.779 0.000 0.996 0.000 0.311 0.002 0.000 0.000 0.685 0.002 0.000 0.000 [~
) [Tl B]
ots) 55 10s 15s 20s 255 30s 355 405 455 508 sss | Ruler Area
OMP Master T £ P Region In...
OMP Worker T | Thread ™
oMP worker T| I "
OMP Worker T N (Gl
Hardware Ev...
h= —
3 | duk cPu_cify
= 3 L)
=
Hardware Eve...
Hardware Ev...
ik cpu_cq‘?\
1~] Package Ban...
v Bandwidt...
—— I A — | L
Mk Bandwidt...
Package Ba... [®19.952
[m
I No filters are applied. -Any Process | Any Thread User functions + 1 | [GIRERVELER on Functions only

|ﬂ Any Module

Krzysztof Banas

Computational Performance

Performance tools

> Profiling
" collecting performance related data concerning a given program

* the main usage of profiling is to give the time spent in different
parts of the code
> subroutines (functions)
> blocks of code
> individual lines of code

« profiling can also report other events during program execution,
that can be e.g. used to create:
> call graph
> 1nstruction and subroutine (function) number of executions

= profiling information can be stored and communicated in
different ways
e summary information
* fraces
 on-line monitoring

Krzysztof Banas Computational Performance 7

Performance tools - tracers

> A typical output of a popular Vampir tool for MPI tracing

0 I ' 1 1 1 . it
’ .

Krzysztof Banas Computational Performance 8

Performance tools

> Profiling
= profilers can collect data using different mechanisms:

* instrumentation (gprof)

- inserting additional code to report the events related to execution
and state of the program (e.g. call stack)

> instrumentation requires special compilation

* execution simulation (valgrind)
> execution of the program using a special virtual machine
> simulation incurs significant overhead

* statistical sampling (gprof)

> program execution is interrupted at specified time intervals and
the state of the execution environment is stored (e.g. call stack)

* event notification

> for environments (virtual machines) equipped with suitable
capabilities

Krzysztof Banas Computational Performance 9

Performance tools - gprof

> Steps for gprof profiling (using gcc compiler):
" compilation with instrumentation
$ gcc -p source_file.c

" standard execution (gmon.out file created)
$ a.out

" displaying results (binary file as argument, not gmon.out)
$ gprof a.out

" part of typical output:

Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
45.72 0.48 0.48 31241 0.02 0.02 fun_ 1
20.96 0.70 0.22 10 22.00 22.00 fun 2
15.24 0.86 0.16 31241 0.01 0.01 fun 3

" the output can be redirected to a file ($ gprof a.out > file.txt)

Krzysztof Banas Computational Performance 10

Hardware counters

> Hardware counters (performance monitoring counters) are
special registers for storing the numbers of hardware events
related to performance

" hardware counters are specific for each processor architecture

" hardware counters are mainly used to support the design and
testing of new architectures, as well as fine tuning of compilers
and system software

* hardware events can be very detailed, reflecting the complex
nature of contemporary processors

> example: "IDQ_UOPS_NOT_DELIVERED.CORE - Counts the

number of uops not delivered to Resource Allocation Table (RAT)
per thread adding “4 — x” when Resource Allocation Table (RAT)
is not stalled and Instruction Decode Queue (IDQ) delivers x uops

to Resource Allocation Table (RAT) (where x belongs to {0,1,2,3})

" there are hundreds of hardware events that can be reported by
hardware counters

Krzysztof Banas Computational Performance 11

Hardware counters

> The most important events are related to:
" time measurements — clock cycles counters
" instructions executed — especially branches and flops

" cache and memory access related events — especially cache
hits and misses

> There are several applications that provide the interface to
hardware counters for different processors and
programming environments

" the basic one for Linux, for recent kernels, is perf utility
(evolved from Performance Counters for Linux), based on
perf Linux subsystem and kernel support

" other popular for Linux:
* o'profile

* Performance Application Programming Interface (PAPI) —
used during our course

Krzysztof Banas Computational Performance 12

Performance tools — perf

> Standard usage of perf stat:
$ perf stat a.out
> Typical output:
Performance counter stats for 'a.out":

2486027 instructions 1,02 insn per cycle
490849 branches 755,158 M/sec
14307 branch-misses # 2,91% of all branches

0,649995 task-clock (msec) # 0,697 CPUs utilized
21 context-switches # 0,032 M/sec
0 cpu-migrations # 0,000 K/sec
294 page-faults # 0,452 M/sec
2443055 cycles # 3,759 GHz
#
#

" more details can be obtained with options
$ perf stat -d -d a.out

Krzysztof Banas Computational Performance 13

Optimizing compilers

> Contemporary compilers can have dozens of optimization options
= examples (for gcc):
. -fstrength-reduce, -fcse-follow-jumps, -ffast-math, -funroll-loops,
-fschedule-insns, -finline-functions, -fomit-frame-pointer

" important optimizations concern parallelization and vectorization
. often in order to use particular optimizations for a given hardware
(concerning e.g. vectorization) special options have to be passed explicitly to
the compiler — e.g. -march=core—avx2 — for cores with AVX2 instructions

« often directives in source code help compilers to optimize

> In practice, most often compiler optimization 1s applied using options
for optimization levels

. typlcal levels and performed optimizations are:
* -O0 — no optimization
* -O1 — optimize for execution time and code size

* -O2 — more optimization options applied, without sacrificing too much time
and going into options that can alter the results of code execution

* -O3 —the most aggressive optimization
* (some compilers can have more levels, e.g. for vectorization, parallelization)

Krzysztof Banas Computational Performance 14

,2INumbers every programmer should know”

> Examples:

" L1 cache reference 1 ns

" Branch mispredict 5 ns

" L2 cache reference 5 ns

" Mutex lock/unlock 25 ns

" Main memory reference 100 ns

" Send 4K bytes over 10 Gbps network 10,000 ns

* Transfer 1IMB to/from PCI-E GPU 80,000ns

" Round trip within same datacenter 500,000 ns

" Read 1 MB sequentially from SATA SSD 2,000,000 ns
" Read 1 MB sequentially from disk 5,000,000 ns
" Read 1 MB sequentially from disk 30,000,000 ns

" Send packet CA->Netherlands->CA 150,000,000 ns

> Current list:
https://gist.github.com/eshelman/343alc46cb3fbal42clafdcdeec17646

Krzysztof Banas Computational Performance 15

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15

