
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Krzysztof Banaś Computational Performance 2

Computational Performance

➔ Performance (efficiency) is (besides correctness, reliability,
security, maintainability, user friendliness, etc.) one of the
most important software qualities

➔ Performance, as is understood in the current lectures, has its
main related parameter: time-to-solution (execution time)
 guideline: performance = 1/time-to-solution

➔ Analysis of computational performance is concerned with
elements that influence the time of program execution

➔ Performance modeling tries to express the execution time in
terms of mathematical formulas, using a set of theoretically
or experimentally obtained parameters

➔ Performance optimization finds ways to improve the
computational performance of programs and minimize its
execution time

Krzysztof Banaś Computational Performance 3

Computational Performance

➔ In different application areas execution time depends
on many different factors:
 time for performing operations by CPUs
 time for accessing data in DRAM memory
 time for sending data over network
 time for accessing disk drives, SSDs, etc.
 time for performing transactions with databases
 time for displaying images and graphics primitives
 time for creating and displaying video frames

➔ In the current lectures we are concerned with programs
for which execution time depends on the three first
factors above

Krzysztof Banaś Computational Performance 4

Computational Performance

➔ Current lectures:
 simple programs in C

• micro-benchmarks for individual system components and
simple operations

• operations on vectors and matrices – numerical linear
algebra

 hardware-software interaction
• assembly code

 benchmarks
 optimization

• classical – manual and automatic by compilers
• parallel

➢ multithreading (CPU, GPU)
➢ message passing

Krzysztof Banaś Computational Performance 5

Performance tools

➔ Execution time:
 wall clock time, elapsed time, real time – external time measure,

the most important for software users
 CPU time – time when CPU was executing program instructions

• user time – time in user mode
• system time – time in kernel mode

➔ Tools for measuring wall clock and CPU time
• wrist watches, stopwatches
• top utility, system monitors
• time utility in Linux
• profilers: gprof, valgrind
• hardware counters
• special performance analysis applications

➢ Intel VTune, Advisor, NVIDIA Visual Profiler, AMD uProf

Krzysztof Banaś Computational Performance 6

Performance tools

➔ Intel Vtune – a complex performance analysis tool

Krzysztof Banaś Computational Performance 7

Performance tools

➔ Profiling
 collecting performance related data concerning a given program

• the main usage of profiling is to give the time spent in different
parts of the code

➢ subroutines (functions)
➢ blocks of code
➢ individual lines of code

• profiling can also report other events during program execution,
that can be e.g. used to create:

➢ call graph
➢ instruction and subroutine (function) number of executions

 profiling information can be stored and communicated in
different ways
• summary information
• traces
• on-line monitoring

Krzysztof Banaś Computational Performance 8

Performance tools - tracers

➔ A typical output of a popular Vampir tool for MPI tracing

Krzysztof Banaś Computational Performance 9

Performance tools

➔ Profiling
 profilers can collect data using different mechanisms:

• instrumentation (gprof)
➢ inserting additional code to report the events related to execution

and state of the program (e.g. call stack)
➢ instrumentation requires special compilation

• execution simulation (valgrind)
➢ execution of the program using a special virtual machine
➢ simulation incurs significant overhead

• statistical sampling (gprof)
➢ program execution is interrupted at specified time intervals and

the state of the execution environment is stored (e.g. call stack)
• event notification

➢ for environments (virtual machines) equipped with suitable
capabilities

Krzysztof Banaś Computational Performance 10

Performance tools - gprof

➔ Steps for gprof profiling (using gcc compiler):
 compilation with instrumentation

$ gcc -p source_file.c
 standard execution (gmon.out file created)

$ a.out
 displaying results (binary file as argument, not gmon.out)

$ gprof a.out
 part of typical output:

Flat profile:
Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 45.72 0.48 0.48 31241 0.02 0.02 fun_1
 20.96 0.70 0.22 10 22.00 22.00 fun_2
 15.24 0.86 0.16 31241 0.01 0.01 fun_3
...

 the output can be redirected to a file ($ gprof a.out > file.txt)

Krzysztof Banaś Computational Performance 11

Hardware counters

➔ Hardware counters (performance monitoring counters) are
special registers for storing the numbers of hardware events
related to performance
 hardware counters are specific for each processor architecture
 hardware counters are mainly used to support the design and

testing of new architectures, as well as fine tuning of compilers
and system software
• hardware events can be very detailed, reflecting the complex

nature of contemporary processors
➢ example: "IDQ_UOPS_NOT_DELIVERED.CORE - Counts the

number of uops not delivered to Resource Allocation Table (RAT)
per thread adding “4 – x” when Resource Allocation Table (RAT)
is not stalled and Instruction Decode Queue (IDQ) delivers x uops
to Resource Allocation Table (RAT) (where x belongs to {0,1,2,3})

 there are hundreds of hardware events that can be reported by
hardware counters

Krzysztof Banaś Computational Performance 12

Hardware counters

➔ The most important events are related to:
 time measurements – clock cycles counters
 instructions executed – especially branches and flops
 cache and memory access related events – especially cache

hits and misses
➔ There are several applications that provide the interface to

hardware counters for different processors and
programming environments
 the basic one for Linux, for recent kernels, is perf utility

(evolved from Performance Counters for Linux), based on
perf Linux subsystem and kernel support

 other popular for Linux:
• o'profile
• Performance Application Programming Interface (PAPI) –

used during our course

Krzysztof Banaś Computational Performance 13

Performance tools – perf

➔ Standard usage of perf stat:
$ perf stat a.out

➔ Typical output:
 Performance counter stats for 'a.out':
 0,649995 task-clock (msec) # 0,697 CPUs utilized
 21 context-switches # 0,032 M/sec
 0 cpu-migrations # 0,000 K/sec
 294 page-faults # 0,452 M/sec
 2443055 cycles # 3,759 GHz
 2486027 instructions # 1,02 insn per cycle
 490849 branches # 755,158 M/sec
 14307 branch-misses # 2,91% of all branches
 ...

 more details can be obtained with options
$ perf stat -d -d a.out

Krzysztof Banaś Computational Performance 14

Optimizing compilers
➔ Contemporary compilers can have dozens of optimization options

 examples (for gcc):
• -fstrength-reduce, -fcse-follow-jumps, -ffast-math, -funroll-loops,

-fschedule-insns, -finline-functions, -fomit-frame-pointer
 important optimizations concern parallelization and vectorization

• often in order to use particular optimizations for a given hardware
(concerning e.g. vectorization) special options have to be passed explicitly to
the compiler – e.g. -march=core-avx2 – for cores with AVX2 instructions

• often directives in source code help compilers to optimize
➔ In practice, most often compiler optimization is applied using options

for optimization levels
 typical levels and performed optimizations are:

• -O0 – no optimization
• -O1 – optimize for execution time and code size
• -O2 – more optimization options applied, without sacrificing too much time

and going into options that can alter the results of code execution
• -O3 – the most aggressive optimization
• (some compilers can have more levels, e.g. for vectorization, parallelization)

Krzysztof Banaś Computational Performance 15

„Numbers every programmer should know”

➔ Examples:
 L1 cache reference 1 ns
 Branch mispredict 5 ns
 L2 cache reference 5 ns
 Mutex lock/unlock 25 ns
 Main memory reference 100 ns
 Send 4K bytes over 10 Gbps network 10,000 ns
 Transfer 1MB to/from PCI-E GPU 80,000ns
 Round trip within same datacenter 500,000 ns
 Read 1 MB sequentially from SATA SSD 2,000,000 ns
 Read 1 MB sequentially from disk 5,000,000 ns
 Read 1 MB sequentially from disk 30,000,000 ns
 Send packet CA->Netherlands->CA 150,000,000 ns

➔ Current list:
https://gist.github.com/eshelman/343a1c46cb3fba142c1afdcdeec17646

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15

