
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Krzysztof Banaś Computational Performance 2

Computational Performance

➔ Performance (efficiency) is (besides correctness, reliability,
security, maintainability, user friendliness, etc.) one of the
most important software qualities

➔ Performance, as is understood in the current lectures, has its
main related parameter: time-to-solution (execution time)
 guideline: performance = 1/time-to-solution

➔ Analysis of computational performance is concerned with
elements that influence the time of program execution

➔ Performance modeling tries to express the execution time in
terms of mathematical formulas, using a set of theoretically
or experimentally obtained parameters

➔ Performance optimization finds ways to improve the
computational performance of programs and minimize its
execution time

Krzysztof Banaś Computational Performance 3

Computational Performance

➔ In different application areas execution time depends
on many different factors:
 time for performing operations by CPUs
 time for accessing data in DRAM memory
 time for sending data over network
 time for accessing disk drives, SSDs, etc.
 time for performing transactions with databases
 time for displaying images and graphics primitives
 time for creating and displaying video frames

➔ In the current lectures we are concerned with programs
for which execution time depends on the three first
factors above

Krzysztof Banaś Computational Performance 4

Computational Performance

➔ Current lectures:
 simple programs in C

• micro-benchmarks for individual system components and
simple operations

• operations on vectors and matrices – numerical linear
algebra

 hardware-software interaction
• assembly code

 benchmarks
 optimization

• classical – manual and automatic by compilers
• parallel

➢ multithreading (CPU, GPU)
➢ message passing

Krzysztof Banaś Computational Performance 5

Performance tools

➔ Execution time:
 wall clock time, elapsed time, real time – external time measure,

the most important for software users
 CPU time – time when CPU was executing program instructions

• user time – time in user mode
• system time – time in kernel mode

➔ Tools for measuring wall clock and CPU time
• wrist watches, stopwatches
• top utility, system monitors
• time utility in Linux
• profilers: gprof, valgrind
• hardware counters
• special performance analysis applications

➢ Intel VTune, Advisor, NVIDIA Visual Profiler, AMD uProf

Krzysztof Banaś Computational Performance 6

Performance tools

➔ Intel Vtune – a complex performance analysis tool

Krzysztof Banaś Computational Performance 7

Performance tools

➔ Profiling
 collecting performance related data concerning a given program

• the main usage of profiling is to give the time spent in different
parts of the code

➢ subroutines (functions)
➢ blocks of code
➢ individual lines of code

• profiling can also report other events during program execution,
that can be e.g. used to create:

➢ call graph
➢ instruction and subroutine (function) number of executions

 profiling information can be stored and communicated in
different ways
• summary information
• traces
• on-line monitoring

Krzysztof Banaś Computational Performance 8

Performance tools - tracers

➔ A typical output of a popular Vampir tool for MPI tracing

Krzysztof Banaś Computational Performance 9

Performance tools

➔ Profiling
 profilers can collect data using different mechanisms:

• instrumentation (gprof)
➢ inserting additional code to report the events related to execution

and state of the program (e.g. call stack)
➢ instrumentation requires special compilation

• execution simulation (valgrind)
➢ execution of the program using a special virtual machine
➢ simulation incurs significant overhead

• statistical sampling (gprof)
➢ program execution is interrupted at specified time intervals and

the state of the execution environment is stored (e.g. call stack)
• event notification

➢ for environments (virtual machines) equipped with suitable
capabilities

Krzysztof Banaś Computational Performance 10

Performance tools - gprof

➔ Steps for gprof profiling (using gcc compiler):
 compilation with instrumentation

$ gcc -p source_file.c
 standard execution (gmon.out file created)

$ a.out
 displaying results (binary file as argument, not gmon.out)

$ gprof a.out
 part of typical output:

Flat profile:
Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 45.72 0.48 0.48 31241 0.02 0.02 fun_1
 20.96 0.70 0.22 10 22.00 22.00 fun_2
 15.24 0.86 0.16 31241 0.01 0.01 fun_3
...

 the output can be redirected to a file ($ gprof a.out > file.txt)

Krzysztof Banaś Computational Performance 11

Hardware counters

➔ Hardware counters (performance monitoring counters) are
special registers for storing the numbers of hardware events
related to performance
 hardware counters are specific for each processor architecture
 hardware counters are mainly used to support the design and

testing of new architectures, as well as fine tuning of compilers
and system software
• hardware events can be very detailed, reflecting the complex

nature of contemporary processors
➢ example: "IDQ_UOPS_NOT_DELIVERED.CORE - Counts the

number of uops not delivered to Resource Allocation Table (RAT)
per thread adding “4 – x” when Resource Allocation Table (RAT)
is not stalled and Instruction Decode Queue (IDQ) delivers x uops
to Resource Allocation Table (RAT) (where x belongs to {0,1,2,3})

 there are hundreds of hardware events that can be reported by
hardware counters

Krzysztof Banaś Computational Performance 12

Hardware counters

➔ The most important events are related to:
 time measurements – clock cycles counters
 instructions executed – especially branches and flops
 cache and memory access related events – especially cache

hits and misses
➔ There are several applications that provide the interface to

hardware counters for different processors and
programming environments
 the basic one for Linux, for recent kernels, is perf utility

(evolved from Performance Counters for Linux), based on
perf Linux subsystem and kernel support

 other popular for Linux:
• o'profile
• Performance Application Programming Interface (PAPI) –

used during our course

Krzysztof Banaś Computational Performance 13

Performance tools – perf

➔ Standard usage of perf stat:
$ perf stat a.out

➔ Typical output:
 Performance counter stats for 'a.out':
 0,649995 task-clock (msec) # 0,697 CPUs utilized
 21 context-switches # 0,032 M/sec
 0 cpu-migrations # 0,000 K/sec
 294 page-faults # 0,452 M/sec
 2443055 cycles # 3,759 GHz
 2486027 instructions # 1,02 insn per cycle
 490849 branches # 755,158 M/sec
 14307 branch-misses # 2,91% of all branches
 ...

 more details can be obtained with options
$ perf stat -d -d a.out

Krzysztof Banaś Computational Performance 14

Optimizing compilers
➔ Contemporary compilers can have dozens of optimization options

 examples (for gcc):
• -fstrength-reduce, -fcse-follow-jumps, -ffast-math, -funroll-loops,

-fschedule-insns, -finline-functions, -fomit-frame-pointer
 important optimizations concern parallelization and vectorization

• often in order to use particular optimizations for a given hardware
(concerning e.g. vectorization) special options have to be passed explicitly to
the compiler – e.g. -march=core-avx2 – for cores with AVX2 instructions

• often directives in source code help compilers to optimize
➔ In practice, most often compiler optimization is applied using options

for optimization levels
 typical levels and performed optimizations are:

• -O0 – no optimization
• -O1 – optimize for execution time and code size
• -O2 – more optimization options applied, without sacrificing too much time

and going into options that can alter the results of code execution
• -O3 – the most aggressive optimization
• (some compilers can have more levels, e.g. for vectorization, parallelization)

Krzysztof Banaś Computational Performance 15

„Numbers every programmer should know”

➔ Examples:
 L1 cache reference 1 ns
 Branch mispredict 5 ns
 L2 cache reference 5 ns
 Mutex lock/unlock 25 ns
 Main memory reference 100 ns
 Send 4K bytes over 10 Gbps network 10,000 ns
 Transfer 1MB to/from PCI-E GPU 80,000ns
 Round trip within same datacenter 500,000 ns
 Read 1 MB sequentially from SATA SSD 2,000,000 ns
 Read 1 MB sequentially from disk 5,000,000 ns
 Read 1 MB sequentially from disk 30,000,000 ns
 Send packet CA->Netherlands->CA 150,000,000 ns

➔ Current list:
https://gist.github.com/eshelman/343a1c46cb3fba142c1afdcdeec17646

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15

