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Time dependent form of conservation principles

Differential form for 1D examples from Lecture 1:

Imbalance of terms in stationary formulations leads to changes
of unknown field values in time

Heat conduction – the rate of change in time of the temperature
at a point is equal to the imbalance between the heat flux spatial
derivative and heat source at the point

∂T
∂t
− ∂

dx

(
k
∂T
dx

)
= s(x, t)

Elastodynamics – the acceleration of a point inside a body is
equal to the imbalance between the internal force intensity and
the external body force intensity at the point

ρ
∂2u
∂t2 −

∂

dx

(
E
∂u
∂x

)
= f (x, t)
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Time dependent form of conservation principles

Differential form for time dependent 1D examples from Lecture 1:

Unknown fields as functions of time and space: T(x, t), u(x, t)

Partial differential equations with partial derivatives
Initial condition(s) in addition to boundary conditions

for all points inside the computational domain
T(x, 0) = T0(x) – for non-stationary heat conduction
u(x, 0) = u0(x) , ∂u

∂t (x, 0) = v0(x) – for elastodynamics
initial conditions must agree with boundary conditions

Initial-boundary value problems
well posed→ existence and uniqueness of solutions

Stationary problems can be considered as limits of
non-stationary processes, after reaching steady-state

stationary problems can be solved using methods for time
dependent problems, with solutions converging to steady-state
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Classification of partial differential equations (PDEs)

The most common PDEs in scientific and technical applications are second
order PDEs (PDEs that involve up to the second order derivatives)

all second order linear PDEs can be classified as elliptic, parabolic or hyperbolic
Stationary problems correspond usually to elliptic PDEs, with the standard
form:

− ∂

∂xi

(
aij
∂u
∂xj

)
= f (x) − (aiju,j),i = f

Non-stationary problems, similar to heat equation, correspond to parabolic
PDEs, with the standard form

∂u
∂t
− ∂

∂xi

(
aij
∂u
∂xj

)
= f (x) u,t − (aiju,j),i = f

Non-stationary problems, of the type similar to elastodynamics equations,
correspond to hyperbolic PDEs, with the typical form for scalar unknowns:

∂2u
∂t2 −

∂

∂xi

(
aij
∂u
∂xj

)
= f (x) u,tt − (aiju,j),i = f
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Classification of partial differential equations (PDEs)

Elliptic partial differential equations:
prototypical example – Poisson problem (Laplace problem for f=0):

∆u = f ( ∆u = u,ii – Laplacian operator )

elliptic PDEs with the appropriate boundary conditions are prototypical
boundary value problems (BVPs)
the solutions to elliptic problems (BVPs) are smooth in typical situations
the solutions to elliptic BVPs satisfy the maximum principle

when certain conditions are fulfilled the maximum is obtained on the
boundary of the domain

standard formulations of the finite difference and the finite element
methods work well for elliptic problems

there are usually no problems with stability of solutions (they do not tend
to infinity)
the systems of linear equations associated with elliptic problems are often
(for symmetric coefficient arrays and some other conditions) symmetric
and positive definite
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Classification of partial differential equations (PDEs)

Parabolic partial differential equations:
parabolic equations require initial and boundary conditions for the
existence and uniqueness of solutions

parabolic equations lead to initial-boundary value problems (IBVPs)
the boundary conditions and initial condition(s) must agree

the solutions are smooth in typical situations (due to the elliptic, second
order in space, terms)

even for non-smooth initial conditions the solution rapidly smooths out
with increasing time the solution further smooths out (the spatial
derivatives tend to zero for problems with no sources)

the systems of linear equations associated with parabolic problems are
often (for symmetric coefficient arrays and some other conditions)
symmetric and positive definite
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Classification of partial differential equations (PDEs)

Hyperbolic partial differential equations:
hyperbolic equations require initial and boundary conditions for the
existence and uniqueness of solutions

hyperbolic equations lead to initial-boundary value problems (IBVPs)
the boundary conditions and initial condition(s) must agree

there exist curves, called characteristics, along which the solution
becomes the solution of an ODE

for specific cases the solution along characteristics does not change
e.g. for discontinuous initial condition(s) the solution remain
discontinuous
for advection problems in steady velocity fields the characteristics
coincide with the streamlines of the velocity field

hyperbolic problems correspond to wave and transport (convection,
advection) phenomena

because of that, boundaries are often classified as inflow or outflow
boundaries
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Convection equation

The simplest time dependent problems are first order convection PDEs:

∂u
∂t

+ vi
∂u
∂xi

= f

where v is the convection velocity
for v being the function of x only, the equation is linear
when v is the function of u (or its derivatives), the equation is non-linear

Boundary conditions:
the part of the boundary where the velocity vector points inside – is the
inflow boundary

on the inflow boundary the solution must be specified – to indicate what is
convected into the computational domain
the part of the boundary where the velocity vector points outside – is the
outflow boundary

on the outflow boundary the solution must not be specified – to allow for free
departure from the computational domain
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Convection equation

The convection PDE can be written as[
∂u
∂t
,
∂u
∂x1

,
∂u
∂x2

, ...

]
· [1, v1, v2, ...] = f

and, hence, becomes the relation for the derivative of u along the
spacetime direction [1, v1, v2, ...]
The spacetime direction [1, v1, v2, ...] (i.e. the velocity field) determines
the characteristic curves of the equation, the curves along which the
PDE changes to the ODE

assuming the curves are parametrized by s,
(t, x1, x2, ...) = (t(s), x1(s), x2(s), ...)

each curve is the solution of the system of equations:
dt/ds = 1 dxi/ds = vi

(with the starting point e.g. at time instant t0 and spatial point x0)
along such curves we have:

du
ds

= f
(

since
du
ds

=
∂u
∂t

dt
ds

+
∂u
∂xi

dxi

ds
=
∂u
∂t

+ vi
∂u
∂xi

)
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Convection equation

The convection PDE requires an initial condition:
u(x, 0) = u0(x)

In case of no source term f
the initial ”shape” u0(x) is convected along the direction of velocity v

For the 1D case with no source term and constant v the solution is
u(x, t) = u0(x− vt)

at time instant tn: u(x, tn) = u0(x− vtn)

the solution is just constant
along characteristics x = x0 + vt

x

t

x

t∆

∆

characteristics

∆ t

x∆

x∆

x∆ ∆ t

x

t

characteristics v = = const/

[v, 1]
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The finite difference method for ODEs and PDEs (recall)

The finite difference method for ODEs and PDEs – approximation of
derivatives that appear in equations with formulae that use the values at
discrete points:

based on Taylor’s theorem

f (x0 + h) = f (x0) +
f ′(x0)

1!
h +

f (2)(x0)

2!
h2 + · · ·+ f (n)(x0)

n!
hn + Rn(x0 + h)

where Rn is the remainder:

Rn(x0 + h) =
f (n+1)(ξ)

(n + 1)!
(h)n+1 = O(hn+1) for x0 < ξ < x0 + h

for first order derivatives it gives:

f ′(x0) =
f (x0 + h)− f (x0)

h
+ O(h)

the formula is first order accurate, i.e. the discretization error is
proportional to the first power of the distance (grid size) h
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The finite difference method for PDEs (recall)

Approximation of partial derivatives appearing in equations using formulae
with the values at discrete points:

for example, given points utn
xi−1

, utn
xi

, utn
xi+1

, utn+1
xi

(
utn

xi
= u(tn, xi)

)
and ∆t = tn+1 − tn, ∆x = xi+1 − xi = xi − xi−1:

∂u
∂t
|(tn,xi) ≈

utn+1
xi − utn

xi

∆t

∂u
∂x
|(tn,xi) ≈

utn
xi+1
− utn

xi

∆x
or ∂u

∂x
|(tn,xi) ≈

utn
xi
− utn

xi−1

∆x
or ∂u

∂x
|(tn,xi) ≈

utn
xi+1
− utn

xi−1

2∆x x

t

t_0

t_n+1

t_n

t_n−1

x_i−1 x_i x_i+1

(t_n, x_i)
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The finite difference method and convection equations

For the convection equation one of possible simple finite difference
formulations is:

given the solution at time tn (for t0 taken from the initial condition) and
each point xi within the computational domain ...
calculate the solution at time tn+1 for each point xi according to the
formula:

utn+1
xi − utn

xi

∆t
+ v ·

utn
xi+1
− utn

xi

∆x
= f (tn, xi)

The formulated method is explicit, we do not have to solve a system of
equations, but just calculate:

utn+1
xi = utn

xi
−∆t

(
v ·

utn
xi+1
− utn

xi

∆x
− f (tn, xi)

)
Usually explicit methods are stable (their solutions do not grow to
infinity) only when suitable limits for time steps ∆t are satisfied, e.g.:

∆t · v
∆x

< CFLlimit (CFL is the, so called, Courant-Friedrichs-Lewy number)
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The finite difference method and convection equations

Hyperbolic problems pose important difficulties for numerical approximation
the methods that use characteristics (e.g. find characteristics and then solve the
equations along characteristics) are difficult for systems of PDEs (PDEs for
vector problems) and do not work well when, as is often found in practice,
additional terms (e.g. with second order derivatives) appear in the equations
classical finite difference and finite element methods have problems with
stability and accuracy (even for small time steps)

when exact solutions are not smooth the approximations exhibit spurious oscillations
for the finite difference methods, one of possible solutions is to use, so called, upwind

differencing, where the choice of the difference formulae used for spatial derivatives
depends upon the actual direction of velocity:

utn+1
xi − utn

xi

∆t
+ v ·

utn
xi − utn

xi−1

∆x
= f (tn, xi) for v > 0

utn+1
xi − utn

xi

∆t
+ v ·

utn
xi+1 − utn

xi

∆x
= f (tn, xi) for v < 0

the above upwind scheme is stable for CFL < 1 and is first order accurate in time and
in space
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Accuracy, stability, consistency, convergence

Numerical approximation methods have several properties related to the
behaviour of the discretization error eh = u− uh:

The step size or grid size parameter h is assumed to be the most
important parameter in studying the behaviour of eh

it can be taken as the largest step size or grid cell (element) size (in the
latter case some definition for 2D and 3D grids has to be adopted, e.g. the
radius of the smallest ball (circle) that contains each grid cell or the
longest element edge for the whole mesh)

The most important property is the convergence of a numerical method
A numerical method converges if some suitable norm of discretization
error tends to zero with the discretization parameter h going to zero

‖eh‖ → 0 for h→ 0
The order of accuracy of a discretization error specifies how fast the
method converges to the exact solution with the step size or grid size
tending to zero

it does not say how large is the error for a given value of h
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Accuracy, stability, consistency, convergence

Consistency is a measure to which extent the exact solution u satisfies
the discrete problem

A numerical method is consistent if the exact solution satisfies the
discrete problem in the limit h→ 0

Stability determines whether the numerical (discrete) solution does not
amplifies too much disturbances in problem parameters

the stability of numerical schemes correspond to the well-posedness of
differential problems (continuous dependence on data)
in practical applications stability says whether the numerical solution can
grow significantly (e.g. tend to infinity) in some circumstances

conditionally stable numerical schemes are stable for specific values of h
unconditionally stable schemes are stable for all values of h

The fundamental theorem of numerical analysis states that the solutions
of a scheme that is stable and consistent converge to the exact solution
of the discretized problem
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Krzysztof Banaś, Mathematical modelling in science and engineering 17/27

The finite difference method for ODEs (recall)

There are several fundamental simple finite difference approximations for
ODEs of the form du

dt
= f (t, u)

The first order accurate explicit (forward) Euler method:
utn+1 − utn

∆t
= f (tn, utn) → utn+1 = utn + ∆tf (tn, utn)

The first order accurate implicit (backward) Euler method:
utn+1 − utn

∆t
= f (tn+1, utn+1) → utn+1 −∆tf (tn+1, utn+1) = utn

The second order accurate implicit Crank-Nicolson method:
utn+1 − utn

∆t
=

1
2

(f (tn+1, utn+1) + f (tn, utn)) → utn+1−∆t
2

f (tn+1, utn+1)=utn+
∆t
2

f (tn, utn)

Implicit methods are more stable than explicit methods, but require the
solution of an algebraic equation, that may be non-linear, at each step
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The finite difference method for ODEs (recall)

Explicit Euler time integration

Stability of time integration - dependence on the size of time step
(blue – large, red – small) ... and the type of approximation
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The finite difference method for the heat conduction equation

1D heat conduction equation (no convection - parabolic problem):

∂T
∂t
− ∂

dx

(
k
∂T
dx

)
= s(x, t)

Finite difference approximations:
second order derivative in space - the most popular approach: central
difference

∂

dx

(
k
∂T
dx

)
|(t,xi) ≈ ∂

dx

(
k

T t
xi+1
− T t

xi

∆x

)
|(t,xi) ≈ k

T t
xi+1
−T t

xi

∆x −
T t

xi
−T t

xi−1
∆x

∆x

≈ k
∆x2

(
T t

xi+1
− 2T t

xi
+ T t

xi−1

)
the PDE becomes an ODE

dT
dt
|(t,xi) =

k
∆x2

(
T t

xi+1
− 2T t

xi
+ T t

xi−1

)
+ s(xi, t) = f (t)
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Krzysztof Banaś, Mathematical modelling in science and engineering 20/27

The finite difference method for the heat conduction equation

1D heat conduction equation (no convection - parabolic problem):

∂T
∂t
− ∂

dx

(
k
∂T
dx

)
= s(x, t)

Finite difference approximations:
the obtained ODE is solved by one of basic methods, giving:

for the explicit Euler method

T tn+1
xi = T tn

xi + k
∆t
∆x2

(
T tn

xi+1 − 2T tn
xi + T tn

xi−1

)
+ s(xi, tn)

for the implict Euler method

T tn+1
xi − k

∆t
∆x2

(
T tn+1

xi+1 − 2T tn+1
xi + T tn+1

xi−1

)
− s(xi, tn+1) = T tn

xi

for the Crank-Nicolson method

2T tn+1
xi −k

∆t
∆x2

(
T tn+1

xi+1 −2T tn+1
xi +T tn+1

xi−1

)
−s(xi, tn+1) = 2T tn

xi +k
∆t
∆x2

(
T tn

xi+1−2T tn
xi +T tn

xi−1

)
+s(xi, tn)
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The finite difference method for the heat conduction equation

1D heat conduction equation (no convection - parabolic problem):
∂T
∂t
− ∂

dx

(
k
∂T
dx

)
= s(x, t)

Finite difference approximations:
the finite difference formulae link several values at particular points and
time instants, creating, so called, finite difference stencils:

x

t

t_0

t_n−1

x_i−1 x_i x_i+1

(t_n, x_i)

Crank−Nicolson

Explicit Euler

Implicit Euler

t_n+1

t_n
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The combined FEM+FDM approach to the heat conduction equation

1D heat conduction equation (no convection - parabolic problem):

∂T
∂t
− ∂

dx

(
k
∂T
dx

)
= s(x, t)

The combined FEM+FDM approach - the method of lines
the finite element discretization in space (homogeneous Dirichlet
boundary conditions assumed for simplicity)∫ 1

0

∂T
∂t

(x, t)w(x)dx +

∫ 1

0
k
∂T
∂x

dw
dx

dx =

∫ 1

0
s(x, t) · w(x)dx ∀w ∈ V0

since all the functions depending on x are integrated, the terms in the
equation are functions of time only, ...
... and the equation becomes an ODE, that can written in a concise form:

(T,t,w) + k(T,x,w,x) = (s,w) ∀w ∈ V0
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The combined FEM+FDM approach to the heat conduction equation

1D heat conduction equation (no convection - parabolic problem):

∂T
∂t
− ∂

dx

(
k
∂T
dx

)
= s(x, t)

The combined FEM+FDM approach - the method of lines
the finite difference discretization in time:

backward Euler - implicit, unconditionally stable, first order accurate

(
Tn+1−Tn

∆t
,w) + k(Tn+1

,x ,w,x) = (s(tn, x),w) ∀w ∈ V0

Crank-Nicolson - implicit, unconditionally stable, second order accurate

(
Tn+1−Tn

∆t
,w)+

1
2

k
(

(Tn+1
,x ,w,x) + (Tn

,x,w,x)
)

=
1
2

((s(tn+1, x),w) + (s(tn, x),w)) ∀w ∈ V0

initial condition T0(x) at t0 is specified
boundary condition types are the same as for the stationary problems
at each time step a system of linear equations is solved
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The combined FEM+FDM approach for non-stationary problems

Non-stationary heat conduction in several space variables – notation
T(x, t) - temperature as function of time and space

Tn(x) = T(x, tn)

assumption for finite element discretization:

T(x, t) =

N∑
L=1

TL(t)ψL(x)

T(t) = {TL(t)} - the set of degrees of freedom for the approximation of T
hence

∂T(x, t)
∂t

=

N∑
L=1

dTL

dt
ψL(x) =

N∑
L=1

ṪLψL(x) Tn(x) =

N∑
L=1

Tn
LψL(x)

and Ṫ = {ṪL} Tn = {Tn
L}

test functions in the standard way:
w =

N∑
K=1

WKψK(x)
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The combined FEM+FDM approach for non-stationary problems

Non-stationary heat equations in several space variables

∂T
∂t
− k

∂2T
∂x2

i
= s(x, t) T,t − kT,ii = s(x, t)

weak formulation (Dirichlet boundary conditions for simplicity)

(T,t,w) + k(T,i,w,i) = (s,w) ∀w ∈ V0

finite element space discretization leads to
N∑

L=1

(ψK , ψL) ṪL +

N∑
L=1

k
(

dψK

dx
,

dψL

dx

)
TL = (s, ψK) for K =1, 2, ...,N

that can be written as
MṪ + KT = b

with

MK,L =(ψK , ψL) KK,L =k
(

dψK

dxi
,

dψL

dxi

)
bn

K =(ψK , ψL) Tn
L+∆t(s(tn, x), ψK)
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The combined FEM+FDM approach for non-stationary problems

FDM for linear ODEs of the form

MṪ + KT = b
explicit Euler time integration:

MTn+1 = MTn −∆tKTn + ∆tbn

implicit Euler time integration:

MTn+1 + ∆tKTn+1 = MTn + ∆tbn+1

Crank-Nicolson time integration:

MTn+1 +
1
2

∆tKTn+1 = MTn − 1
2

∆tKTn +
1
2

∆t
(

bn + bn+1
)

the above time integration schemes can be generalized into the so called
α-method

MTn+1 + α∆tKTn+1 = MTn − (1− α)∆tKTn + ∆t
(

(1− α)bn + αbn+1
)

with: α = 0 – for explicit Euler, α = 1 – for implicit Euler, α = 0.5 – for
Crank-Nicolson,
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The combined FEM+FDM approach for non-stationary problems

The method of lines
the same discretization steps as for the non-stationary heat equation can be
done for other time-dependent problems
for first order equations the resulting systems of ordinary differential
equations may be written as:

MṪ + KT = b
for second order hyperbolic problems the ODEs have the form:

MÜ + CU̇ + KU = b
due to interpretations in mechanics the matrix M is usually caled ”the mass
matrix”, while the matrix K is ”the stiffness matrix”
any method, explicit or implicit, can be used to solve the above ODEs

typical choices include: the introduced variations of the α-method, Runge-Kutta
methods, a family of Newmark methods for second order equations, discontinuous
Galerkin time discretization, etc.

in order not to solve a system of linear equations at each time step, so called ”mass
lumping” (diagonalization of M) is performed for explicit methods
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