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Finite element formulation for stationary heat transfer problems

For differential formulation of the form (with zero Dirichlet BC only, for
simplicity):

−∇ · (k(T, x)∇T) = s

The following weak statement can be derived:

Find approximate function Th ∈ Vh
T , such that the following

statement: ∫
Ω

k(Th, x)Th
,iw

h
,idΩ =

∫
Ω

swhdΩ

holds for every test function wh ∈ Vh
w.

For material properties being the function of x only, the problem is
(quasi-)linear
For material properties being the function of T as well, the problem has
material non-linearity
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Finite element formulation for stationary heat transfer problems

Adding Neumann and Robin boundary conditions:

−k(Th, x)
dT
dn

= −k(Th, x)T,ini = −qN on ΓN

−k(Th, x)
dT
dn

= −k(Th, x)T,ini = c(Th, x)(T − Text) on ΓR

Lead to the formulation with additional terms:

Find approximate function Th ∈ Vh
T , such that the following

statement:∫
Ω

k(Th, x)Th
,iw

h
,idΩ =

∫
Ω

swhdΩ+

∫
ΓN

qNwhdΓ−
∫

ΓR

c(T−Text)whdΓ

holds for every test function wh ∈ Vh
w
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Finite element formulation for stationary heat transfer problems

The final formulation for linear stationary heat transfer problems:

Find approximate function Th ∈ Vh
T , such that the following

statement:∫
Ω

kTh
,iw

h
,idΩ+

∫
ΓR

cTwhdΓ =

∫
Ω

swhdΩ+

∫
ΓN

qNwhdΓ+

∫
ΓR

cTextwhdΓ

holds for every test function wh ∈ Vh
w

... leads to the following formulae for the entries of the global stiffness matrix
and the global load vector

Ai,j =

∫
Ω

k
dψj

dxl

dψi

dxl
dΩ +

∫
ΓR

cψjψidΓ

bi =

∫
Ω

sψidΩ +

∫
ΓN

qNψidΓ +

∫
ΓR

cTextψidΓ
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Finite element systems of linear equations

Standard discretizations for linear stationary problems require the
solution of a system of linear equations

N∑
j

Ai,jUh
j = bi i = 1, 2, ...,N ≡ AUh = b

for non-stationary problems and implicit time integration a system of
linear equations is solved at every time step
for non-linear problems a system of linear equations is solved for every
iteration of the solution method

The procedures for solving a linear system include
the creation of the system of linear equations that includes the integration
of the terms from the weak statement for suitable pairs of basis functions

the integrals are calculated separately for each element, forming local, element
system matrices and right hand side vectors

the local matrices and vectors are than assembled into the global system matrix
and the global right hand side vector

the solution of the system, that takes into account its special form
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Finite element systems of linear equations

The assembly of global finite element systems of linear equations
local element matrices computed using numerical integration
local numbering of degrees of freedom
global numbering of degrees of freedom
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Finite element systems of linear equations

The solved equations are
usually large (up to billions of unknowns)
sparse (for large systems more than 99.99% entries in the system matrix
are zero)
often ill conditioned – with large condition number and slow convergence
of iterative methods
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Finite element systems of linear equations

Practical solutions for solving FEM systems of linear equations

Direct methods for solving large sparse systems of linear equations
the variants of Gaussian elimination
the problem of fill-in

renumbering
frontal methods
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Finite element systems of linear equations

Practical solutions for solving FEM systems of linear equations
Iterative methods for solving large sparse systems of linear equations

slow convergence of standard iterative methods
simple preconditioners: Jacobi (diagonal scaling), Gauss-Seidel,
incomplete LU factorization
complex preconditioners: multigrid, special preconditioners for specific
problems
the best iterative solvers can have linear complexity, both in terms of
solution time and storage requirements
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Finite element solution procedures

Parallel solution based on domain decomposition
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Non-linear problem solution
Finite element space discretization of non-linear problems leads to the set
of non-linear algebraic equations for the vector of degrees of freedom Uh,
that can be shortly written as:

A(Uh)Uh = b

The general methods for solving multidimensional systems of the form

F(U) = 0

usually refer to the Newton’s iterative method, that finds the subsequent
approximations

Uk+1 = Uk + ∆Uk

where ∆Uk is the solution to the equation

J(Uk) ·∆Uk = −F(Uk)

with the Jacobian matrix J representing the gradient of the function F

J = ∂F/∂U
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Non-linear problem solution

Applying the Newton’s method to the system:

A(Uh)Uh = b
leads to the equation(

∂A
∂Uh (Uh

k)Uh
k + A(Uh

k)

)
·∆Uh

k = −A(Uh
k)Uh

k + b

When the derivative ∂A
∂Uh is assumed to vanish, the system reduces to the

form
A(Uh

k) · Uh
k+1 = b

that can be interpreted as using fixed point (Picard’s) iterations

Uh
k+1 = A(Uh

k)−1 · b

for the original nonlinear problem



Finite element solution procedures
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Non-linear problem solution

In general (for 1D case) Picard’s (fixed point) iterations are defined as
subsequent computations

xk+1 = g(xk)

that after convergence lead to the satisfaction of the nonlinear problem
x = g(x)

Newton’s method iterations for the problem f (x) = 0:

xk+1 = x(k)− f ′(xk)
−1 · f (xk) [= g(xk)]

can be interpreted as a special case of fixed point iterations
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