Mathematical modelling in science and engineering

Lecture 3 Finite element solution procedures

Krzysztof Banaś

Department of Applied Computer Science and Modelling AGH University of Science and Technology, Kraków, Poland

▲□▶▲□▶▲□▶▲□▶ □ のQで

Finite element formulation for stationary heat transfer problems

• For differential formulation of the form (with zero Dirichlet BC only, for simplicity):

$$-\boldsymbol{\nabla}\cdot(k(T,\boldsymbol{x})\boldsymbol{\nabla}T)=s$$

• The following weak statement can be derived:

Find approximate function $T^h \in V_T^h$, such that the following statement:

$$\int_{\Omega} k(T^{h}, \boldsymbol{x}) T^{h}_{,i} w^{h}_{,i} d\Omega = \int_{\Omega} s w^{h} d\Omega$$

holds for every test function $w^h \in V^h_w$.

- For material properties being the function of *x* only, the problem is (quasi-)linear
- For material properties being the function of *T* as well, the problem has material non-linearity

Finite element formulation for stationary heat transfer problems

• Adding Neumann and Robin boundary conditions:

$$-k(T^h, \mathbf{x})\frac{dT}{d\mathbf{n}} = -k(T^h, \mathbf{x})T_{,i}n_i = -q_N$$
 on Γ_N

$$-k(T^{h},\boldsymbol{x})\frac{dT}{d\boldsymbol{n}} = -k(T^{h},\boldsymbol{x})T_{,i}n_{i} = c(T^{h},\boldsymbol{x})(T-T_{ext}) \quad \text{on} \quad \Gamma_{R}$$

• Lead to the formulation with additional terms:

Find approximate function $T^h \in V_T^h$, such that the following statement:

$$\int_{\Omega} k(T^{h}, \mathbf{x}) T^{h}_{,i} w^{h}_{,i} d\Omega = \int_{\Omega} s w^{h} d\Omega + \int_{\Gamma_{N}} q_{N} w^{h} d\Gamma - \int_{\Gamma_{R}} c(T - T_{ext}) w^{h} d\Gamma$$

holds for every test function $w^h \in V^h_w$

Finite element formulation for stationary heat transfer problems

The final formulation for linear stationary heat transfer problems:
Find approximate function *T^h* ∈ *V^h_T*, such that the following statement:

$$\int_{\Omega} kT^{h}_{,i} w^{h}_{,i} d\Omega + \int_{\Gamma_{R}} cT w^{h} d\Gamma = \int_{\Omega} sw^{h} d\Omega + \int_{\Gamma_{N}} q_{N} w^{h} d\Gamma + \int_{\Gamma_{R}} cT_{ext} w^{h} d\Gamma$$

holds for every test function $w^h \in V^h_w$

• ... leads to the following formulae for the entries of the global stiffness matrix and the global load vector

$$A_{i,j} = \int_{\Omega} k \frac{d\psi_j}{dx_l} \frac{d\psi_i}{dx_l} d\Omega + \int_{\Gamma_R} c\psi_j \psi_i d\Gamma$$
$$b_i = \int_{\Omega} s\psi_i d\Omega + \int_{\Gamma_N} q_N \psi_i d\Gamma + \int_{\Gamma_R} cT_{ext} \psi_i d\Gamma$$

Krzysztof Banaś, Mathematical modelling in science and engineering

Finite element systems of linear equations

• Standard discretizations for linear stationary problems require the solution of a system of linear equations

$$\sum_{j}^{N} \mathbf{A}_{i,j} \mathbf{U}_{j}^{h} = \mathbf{b}_{i} \qquad i = 1, 2, ..., N \qquad \equiv \qquad \mathbf{A} \mathbf{U}^{h} = \mathbf{b}$$

- for non-stationary problems and implicit time integration a system of linear equations is solved at every time step
- for non-linear problems a system of linear equations is solved for every iteration of the solution method
- The procedures for solving a linear system include
 - the creation of the system of linear equations that includes the integration of the terms from the weak statement for suitable pairs of basis functions
 - the integrals are calculated separately for each element, forming local, element system matrices and right hand side vectors
 - the local matrices and vectors are than assembled into the global system matrix and the global right hand side vector
 - the solution of the system, that takes into account its special form

Krzysztof Banaś, Mathematical modelling in science and engineering

Finite element systems of linear equations

- The assembly of global finite element systems of linear equations
 - local element matrices computed using numerical integration
 - local numbering of degrees of freedom
 - global numbering of degrees of freedom

Krzysztof Banaś, Mathematical modelling in science and engineering

Finite element systems of linear equations

- The solved equations are
 - usually large (up to billions of unknowns)
 - sparse (for large systems more than 99.99% entries in the system matrix are zero)

7/13

• often ill conditioned – with large condition number and slow convergence of iterative methods

Finite element systems of linear equations

Practical solutions for solving FEM systems of linear equations

- Direct methods for solving large sparse systems of linear equations
 - the variants of Gaussian elimination
 - the problem of fill-in
 - renumbering
 - frontal methods

Finite element systems of linear equations

Practical solutions for solving FEM systems of linear equations

- Iterative methods for solving large sparse systems of linear equations
 - slow convergence of standard iterative methods
 - simple preconditioners: Jacobi (diagonal scaling), Gauss-Seidel, incomplete LU factorization
 - complex preconditioners: multigrid, special preconditioners for specific problems
 - the best iterative solvers can have linear complexity, both in terms of solution time and storage requirements

Krzysztof Banaś, Mathematical modelling in science and engineering

Finite element solution procedures

Parallel solution based on domain decomposition

Krzysztof Banaś, Mathematical modelling in science and engineering

Non-linear problem solution

• Finite element space discretization of non-linear problems leads to the set of non-linear algebraic equations for the vector of degrees of freedom **U**^{*h*}, that can be shortly written as:

$$\mathbf{A}(\mathbf{U}^h)\mathbf{U}^h=\mathbf{b}$$

• The general methods for solving multidimensional systems of the form

$$\mathbf{F}(\mathbf{U}) = \mathbf{0}$$

usually refer to the Newton's iterative method, that finds the subsequent approximations

$$\mathbf{U}_{k+1} = \mathbf{U}_k + \mathbf{\Delta}\mathbf{U}_k$$

where $\Delta \mathbf{U}_k$ is the solution to the equation

$$\mathbf{J}(\mathbf{U}_k)\cdot\mathbf{\Delta}\mathbf{U}_k=-\mathbf{F}(\mathbf{U}_k)$$

with the Jacobian matrix \mathbf{J} representing the gradient of the function \mathbf{F}

$$J=\partial F/\partial U$$

Krzysztof Banaś, Mathematical modelling in science and engineering

Non-linear problem solution

• Applying the Newton's method to the system:

$$\mathbf{A}(\mathbf{U}^h)\mathbf{U}^h=\mathbf{b}$$

leads to the equation

$$\left(\frac{\partial \mathbf{A}}{\partial \mathbf{U}^{h}}(\mathbf{U}_{k}^{h})\mathbf{U}_{k}^{h}+\mathbf{A}(\mathbf{U}_{k}^{h})\right)\cdot\mathbf{\Delta}\mathbf{U}_{k}^{h}=-\mathbf{A}(\mathbf{U}_{k}^{h})\mathbf{U}_{k}^{h}+\mathbf{b}$$

When the derivative ∂A/∂U^h is assumed to vanish, the system reduces to the form
A(U^h_k) · U^h_{k+1} = b

that can be interpreted as using fixed point (Picard's) iterations

$$\mathbf{U}_{k+1}^h = \mathbf{A}(\mathbf{U}_k^h)^{-1} \cdot \mathbf{b}$$

for the original nonlinear problem

12/13

Krzysztof Banaś, Mathematical modelling in science and engineering

Non-linear problem solution

• In general (for 1D case) Picard's (fixed point) iterations are defined as subsequent computations

$$x_{k+1} = g(x_k)$$

that after convergence lead to the satisfaction of the nonlinear problem

x = g(x)

• Newton's method iterations for the problem f(x) = 0:

$$x_{k+1} = x(k) - f'(x_k)^{-1} \cdot f(x_k) \ [= g(x_k)]$$

can be interpreted as a special case of fixed point iterations

