Mathematical modelling in science and engineering

Lecture 1 Preliminaries

Krzysztof Banaś

Department of Applied Computer Science and Modelling AGH University of Science and Technology, Kraków, Poland

Notation and notational conventions

- $\Omega \subset R^{N}, N=1,2$ or 3 - domain in 1D, 2D or 3D space
- all domains are assumed to have smooth boundaries $\partial \Omega$
- standard font - scalar, bold - vector
- $\boldsymbol{x}=[x, y, z]=\left[x_{1}, x_{2}, x_{3}\right]$ - point in 3D space
- t - time instant
- $f(\mathbf{x}, t)[\mathbf{f}(\mathbf{x}, t)]$ - scalar [vector] function of space and time
- the function will usually denote some description of state of domain points
- the dependence on space and time is often omitted in notation
- when indices i, j, k, l refer to cartesian space coordinates the summation convention for repeated indices is used
- $u_{i} n_{i}=\sum_{i} u_{i} n_{i}$
- "," denotes differentiation (for indices i, j, k, l of cartesian space coordinates and partial derivatives with respect to time)
- $u_{i, i}=\frac{\partial u_{i}}{\partial x_{i}}=\nabla \cdot \mathbf{u}=\operatorname{div} \mathbf{u} \quad u_{, t}=\frac{\partial u}{\partial t}$
- standard mathematical notation, operators, etc.
- e.g. indices of matrix entries: $\mathrm{A}_{i j}$ element i, j of matrix \mathbf{A}

Description of state

Examples of state description:

- material point
- position (spatial coordinates)
- Cartesian - \boldsymbol{x}, polar, spherical, cylindrical
- velocity
- $\boldsymbol{v}=\frac{d \boldsymbol{x}}{d t}$ (a single component: $v_{i}=\frac{d x_{i}}{d t}=x_{i, t}$)
- acceleration
- $\boldsymbol{a}=\frac{d v}{d t}$ (a single component: $a_{i}=\frac{d v_{i}}{d t}=v_{i, t}$)
- displacement

$$
\boldsymbol{l}=\boldsymbol{x}-\boldsymbol{x}_{0} \quad\left(\frac{d \boldsymbol{l}}{d t}=\frac{d \boldsymbol{x}}{d t}=\boldsymbol{v}\right)
$$

- continuous object (1D, 2D and 3D domains)
- scalar fields: energy $-e(\boldsymbol{x}, t)$), temperature $-T(\boldsymbol{x}, t)$
- vector fields: displacement $-\boldsymbol{l}(\boldsymbol{x}, t))$, velocity $-\boldsymbol{v}(\boldsymbol{x}, t)$
- tensor fields: strain $-\boldsymbol{\epsilon}(\boldsymbol{x}, t)\left(\epsilon_{i j}=l_{i, j}+l_{j, i}\right)$, stress $-\boldsymbol{\sigma}(\boldsymbol{x}, t)$
- discretization - a process of transferring a description in terms of infinite number of values into a description that uses only a finite number of values

Discretization

- We will consider several types of discretization
- domain discretization - using a finite number of points and parameters, instead of infinite number of points to describe geometric domains
- function discretization - describing a function (usually continuous) using a finite number of parameters and values at a finite number of points
- equation discretization - transforming a differential equation for a function (usually continuous) into an equation for a discretized function
- Discretization usually introduces an error - the original domain, original function and the solution to the original equation differ at certain points from their discretized counterparts
- the discretization error can be measured in a number of different ways
- with the increasing number of parameters and points the discretized domains, discretized functions and solutions to discretized equations usually tend to their original counterparts (the discretization error goes to 0)
- discretization is a form of approximation, we will often use the two terms interchangeably
- Only discretized equations, functions and domains are amenable to computer processing

Domain discretization

－Computational domain
－$\Omega \subset \boldsymbol{R}^{N}, N=1,2$ or $3-$ domain in 1D，2D or 3D space
－Domain discretization－using a finite number of points and parameters， instead of infinite number of points to describe the domain
－the simplest discretization uses a finite number of points and straight line segments to join them
－more complex discretizations employ a finite number of points and
curvilinear segments that join them
－more complex discretizations employ a finite number of points and
curvilinear segments that join them
－in 2D the most popular are linear or curvilinear triangles and quadrilaterals
－in 3D the most popular are linear or curvilinear tetrahedra and hexahedra， as well as prisms and pyramids
－The set of points and segments joining them is called a grid（or mesh）
－There are two basic types of grids（with different neighbourhood relations）
－structured（regular）grids
－unstructured grids

ロ •－回

（

\qquad
.

Example of modelling - mass-spring system with damping

- Reality (experiment)

Balance of forces:

- Physical model
- Mathematical model

Ordinary differential equation

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=0
$$

+ Initial conditions
$m a=\Sigma_{i} F_{i}$ - Newton's second law of mechanics
- Result: oscillations
- Predicted by the mathematical model
- Compared with experimental results
- Validation of the physical and mathematical model (quantitative!)

$$
x(0)=x_{0} \quad \frac{d x}{d t}(0)=v_{0}
$$

$=$ Initial value problem
\rightarrow existence and uniqueness

> of results

Example of modelling - heated 1D rod

- Reality (experiment)

- Physical model

Energy conservation - the rate of change of heat flux is equal to heat source

$$
d q / d x=s(x)
$$

Fourier's law - heat flux is proportional to the temperature gradient

$$
q=-k \cdot d T / d x
$$

- k - heat conduction coefficient
- Mathematical model

Ordinary differential equation

$$
-\frac{d}{d x}\left(k \frac{d T}{d x}\right)=s(x)
$$

+ Boundary conditions

(for both ends, possible types:

- temperature, e.g.

$$
T(0)=T_{0}
$$

- heat flux, e.g.

$$
q(L)=-k \cdot d T / d x=q_{0}
$$

- other (convection, radiation)
= Boundary value problem
\rightarrow existence and uniqueness of results

Generalization of mathematical model derivation

Conservation principle(s)

- "physics" - may be formulated as conservation principle(s)
- for some flux q and source s
- not necessarily related to energy conservation, i.e. heat problem
- general form for stationary 1 D problems:
- integral form (for any interval $(x, x+\Delta x)$):

$$
q(x+\Delta x)-q(x)=\int_{x}^{x+\Delta x} s(\xi) d \xi
$$

- differential form (in the limit $\Delta x \rightarrow 0$) :

$$
\frac{d q}{d x}=s(x)
$$

Constitutive equation(s)

- often called material model
- connects different quantities used in process description

Generalization of mathematical model derivation

Conservation principle(s) (stationary form) + Constitutive equation(s) $=$ Differential equation(s)

- first or second order in space variables
- ordinary (ODE) or partial (PDE), depending on space dimension
- unknown u

Boundary conditions:

- Dirichlet: $\quad u=u_{0}$
- Neumann: $\frac{d u}{d x}=\tilde{q}_{0}$
- Robin:

$$
\frac{d u}{d x}=\tilde{c}\left(u-u_{0}\right)
$$

Differential equation(s) + Boundary conditions
= Boundary value problem
\rightarrow existence and uniqueness of results

One more 1D example - tensile test

- Stress - force intensity: $\sigma=F / A$

- Conservation principle balance of forces (from the conservation of momentum
- Newton's second law of mechanics)

$$
-\frac{d \sigma}{d x}=f(x)
$$

- Strain: $\epsilon=\Delta L / L \rightarrow d l / d x$

- Constitutive equations Hooke's law for linearly elastic material

$$
\sigma=E \epsilon
$$

Differential equation: $\quad-E \frac{d^{2} l}{d x^{2}}=f(x) \quad(f$ - external force intensity)

+ Boundary conditions: displacements (l) or forces $\left(-E \frac{d l}{d x}\right)$ at the ends

