Modelowanie matematyczne w nauce i technice

LAB 06

Wstęp

(Przypomnienie z Lab 03) Poprawnie zdefiniowane zadanie obliczeniowe w programie "**ModFEM**" składa się z następujących elementów:

- Pliku konfiguracyjnego dla zadania obliczeniowego (problem_heat.dat)
- Pliku zawierającego siatkę obliczeniową (w formacie JK lub w bezpośrednim formacie struktur danych ModFEM format i nazwa pliku określone są w pliku konfiguracyjnym problem_heat.dat)
- Pliku zawierającego informację o warunkach brzegowych (o nazwie zwyczajowo przyjmowanej jako bc_heat.dat, ale możliwej do dowolnego ustalenia w pliku konfiguracyjnym problem_heat.dat)
- Opcjonalnie pliku z danymi materiałowymi jest konieczny do rozwiązania zadań z nieliniowością materiałową oraz wieloma materiałami, , w dalszych przykładach wykorzystywany będzie plik o nazwie materials.dat
- Opcjonalnie plików konfiguracyjnych modułów rozwiązywania układów równań liniowych (solwerów liniowych – nazwy plików określone są w pliku konfiguracyjnym problem_heat.dat, w dalszych przykładach wykorzystywany będzie plik konfiguracyjny solwera iteracyjnego o nazwie mkb.dat)

W trakcie dzisiejszych zajęć rozwiążecie Państwo proste zagadnienie wymiany ciepła – stacjonarnego rozkładu temperatury w obszarze dwuwymiarowym, dla pojedynczego materiału z warunkami brzegowymi Dirichleta (zadana temperatura), Neumanna (zadany strumień ciepła) oraz Robina (strumień ciepła zadany jako proporcjonalny do różnicy temperatur między brzegiem obszaru a otoczeniem zewnętrznym o stałej temperaturze).

W kolejnych krokach laboratorium będziecie Państwo tworzyć lub modyfikować pliki konfiguracyjne, uruchamiać program symulacji i analizować wyniki, posługując się wizualizacją w programie ParaView

[

Ułatwieniem sprawdzania poprawności działania programu ModFEM jest wykorzystanie możliwości pracy w trybie wsadowym.

ModFEM po uruchomieniu sprawdza istnienie w katalogu roboczym pliku: input_interactive.txt

Jeśli pliku nie ma, program działa interaktywnie w terminalu (tak jak dotychczas). Jeśli plik jest, ModFEM wykonuje polecenia menu zapisane w pliku i zapisuje niektóre z danych do pliku wyjściowego. Nazwa pliku wyjściowego stanowi pierwszą linijkę pliku input_interactive.txt. Dla przykładowej zawartości pliku **input_interactive.txt**:

lab06_output_01.txt

S

v

q

program rozwiąże zadanie, zapisze pliki z danymi wizualizacji i zakończy działanie - w trakcie pracy część wyników zostanie zapisana do pliku **lab06_output_01.txt** . Zawartość pliku można przeglądać w edytorze, ewentualnie wypisać tylko zawartość interesujących linijek posługując się np. narzędziem grep:

\$ grep -i BC lab06_output_01.txt

- 1 Zadanie 1 (obowiązkowe): Przygotowanie pliku konfiguracyjnego problem_heat.dat dla problemu rozkładu temperatury (jako punkt wyjścia do modyfikacji można użyć własne pliki z poprzednich laboratoriów lub plik ze strony przedmiotu, będący materiałem do laboratorium 1) – w sprawozdaniu należy umieścić odpowiednie zmodyfikowane fragmenty pliku problem_heat.dat Po modyfikacji plik problem_heat.dat powinien mieć następujące ustawienia:
 - nadana indywidualnie nazwa problemu:
 name = "..."; // np. zadanie_stacjonarne_1
 - typ pliku siatki i jego nazwa mesh_type = ".."; //"j"-jk mesh,"p"-standard prismatic mesh format mesh_file_in = ".."; // nazwa pliku dla swojej siatki typu A
 - dowolny sposób nadania warunku początkowego (jest bez znaczenia dla zadania stacjonarnego, więc można użyć zerowania pola temperatury - "z")

field_file_in = "...";

- nazwa pliku z warunkami brzegowymi (zwyczajowo bc_heat.dat) bc_file = "...";
- wzorce nazw plików wyjściowych (można zostawić bez zmian) mesh_file_out = "mesh"; // mesh_dmp_filepattern field_file_out = "field_heat"; // field_dmp_filepattern
- parametr funkcji kary dla wymuszenia warunku brzegowego Dirichleta (zawsze bez zmian dla wszystkich zadań w ramach laboratoriów, metoda funkcji kary będzie wyjaśniona na wykładzie, wskazówki do jej użycia pojawią się jako wnioski z niniejszego laboratorium, p. 7) penalty = 1.0e7;
- ustalenie zadawania danych materiałowych jako wartości umieszczonych poniżej w pliku problem_heat.dat, poprzez zadanie pustej nazwy pliku

materials_file = "";

- zadanie własnych parametrów materiałowych (każdy powinien ustalić własne wartości z następujących zakresów: współczynnik przewodnictwa cieplnego (thermal_conductivity) - 20-50, ciepło właściwe (specific heat) - 600-700, gęstość (density) - 7000-8000 thermal_conductivity = ; // double! density = ; // double! specific_heat = ; // double!
- zadanie dowolnych wartości temperatury odniesienia i temperatury otoczenia (są bez znaczenia dla zadania z pojedynczym materiałem o stałych własnościach i brakiem warunku brzegowego III rodzaju (Robina) lub zadawaniem temperatury otoczenia dla każdego warunku Robina w pliku **bc_heat.dat**)

reference_temperature = 300.0; // switched to -1 for constant material properties

ambient_temperature = 300.0; // possibly used for initial and boundary conditions

- spośród pozostałych parametrów badanego liniowego i stacjonarnego zadania, należy zapewnić:
 - wybór bezpośredniego solwera układów równań liniowych linear_solver_type = 0; // int:
 - wyłączenia automatycznej adaptacji w trakcie rozwiązania adapt_interval = 0;
- pozostałe niedotyczą rozwiązywanego (liniowego i stacjonarnego) zadania i należy pozostawić je bez zmian
- 2 Zadanie 2 (obowiązkowe): Przygotowanie siatki obliczeniowej Należy wykorzystać siatkę A przygotowaną w ramach laboratorium 2 – rysunek siatki z zaznaczonymi rodzajami warunku brzegowego proszę dołączyć do sprawozdania. Dodatkowa poloży wstawić.

Dodatkowo należy ustawić:

- pojedynczą warstwę o małej grubości w celu dobrej wizualizacji zadania, traktowanego jako zadanie 2D (druga linia pliku ...jk, współrzędna z dolnego i górnego brzegu obszaru) ... 0 0.01 1 ...
- w sprawozdaniu należy umieścić kilka pierwszych linii pliku siatki
- 3 Zadanie 3 (obowiązkowe): konfiguracja warunków brzegowych Należy zadać następujące warunki brzegowe w pliku np. bc_heat.dat:
 - ściany górna i dolna (numery warunków w plikujk) warunek symetrii, zapewniający poprawne modelowanie zadania 2D, można do tego użyć warunek zerowania strumienia ciepła
 - ściany oznaczone w temacie laboratorium 2 jako izolacja zerowy strumień ciepła
 - ściany oznaczone jako grzanie/chodzenie
 - chłodzenie warunek Dirichleta z temperaturą z zakresu: 250-290
 - grzanie warunek Dirichleta z temperaturą z zakresu: 450-490
- 4 Zadanie 4 (obowiązkowe). Uruchomienie programu ModFEM [wykonywane na serwerze]
 - 4.1 Do wykonania zadania potrzebny jest program do symulacji zagadnienia rozchodzenia się ciepła utworzony w ramach lab 1:

MOD_FEM_heat_prism_std

- 4.2 Po uruchomieniu należy sprawdzić poprawność wczytania plików konfiguracyjnych powyżej menu głównego pojawia się wydruk z dużą liczbą parametrów kontrolnych
 - 4.2.1 W sprawozdaniu należy umieścić zrzuty ekranu z wartościami parametrów z punktu 1 (zadanie 1), ustalonych w pliku **problem_heat.dat**, z wydrukiem zadanych warunków brzegowych oraz z podsumowaniem wczytanych parametrów siatki. [w wydruku interesujące parametry znajdują się w grupach:
 - początek wydruku (nazwy katalogu roboczego, plików wejściowych, nazwa problemu)
 - grupa CONTROL PARAMETERS (razem z danymi materiałowymi)
 - grupa **BOUNDARY CONDITIONS**
 - grupa **MESH** (aż do wydruku menu opcji wyboru)
- 4.3 W menu głównym należy wybrać opcję rozwiązania pojedynczego zadania stacjonarnego **'s**'

- 4.4 Po rozwiązaniu zadania należy wygenerować pliki Paraview opcja 'v' (wyjście z programu opcja 'q'). Po rozwiązaniu zadania powinny się pojawić pliki:
- ├── heat_0000.pvd └── heat_000000.partmesh └── heat 000000.vtu
 - heat_000000.vtu — heat 000000_BC.vtu

Numer 000000 potwierdza rozwiązanie zadania stacjonarnego.

- 5 Zadanie 5 (obowiązkowe): Praca z programem PARAVIEW.
 - 5.1 Proszę wyświetlić rozwiązanie (pole temperatury) i wykonać zrzuty ekranu do umieszczenia w sprawozdaniu
 - Najlepiej wyłączyć wyświetlanie groupID można to zrobić od razu po wczytaniu pliku, przed naciśnięciem pierwszego Apply
 - Można dobrać własną paletę kolorów
 - 5.1.1 Ważne jest sprawdzenie poprawności uzyskanego pola temperatury:
 - na brzegach z zadanym warunkiem Dirichleta temperatura musi być identyczna z zadaną
 - w obszarze pomiędzy brzegami z warunkiem Dirichleta (i także wzdłuż pozostałych brzegów obszaru 2D) temperatura powinna zmieniać się w sposób zbliżony do liniowego od temperatury chłodzenia do temperatury grzania
- 6 Zadanie 6 (4.0): Badanie wpływu warunków brzegowych Neumanna na postać rozwiązania
 - 6.1 W rozwiązywanym zadaniu należy zmienić typ warunku brzegowego na brzegu grzania z warunku Dirichleta na warunek Neumanna ze strumieniem ciepła z zakresu: 1000-2000
 - 6.2 Należy uzyskać pliki ...vtu dla zadanego przykładu i zapisać pod nazwą wskazującą na wartość warunku Neumanna
 - 6.3 Następnie należy zmieniać kilka razy wartość strumienia ciepła na brzegu grzania (np. zakładając wartość z poprzedniego punktu jako q1, można przyjąć 2*q1, 0, -q1), każdorazowo uzyskując nowe plikivtu (dobrze każdorazowo zapisywać je pod nowymi nazwami
 - 6.4 Następnie należy zbadać wpływ zmiany warunku Neumanna na postać rozwiązania
 - 6.4.1 Plikivtu uzyskane w p.6.2 i 6.3 zapisane pod nowymi nazwami można wczytać jednorazowo do ParaView
 - 6.4.2 Dla wszystkich rozwiązań proszę uzyskać zrzut ekranu tak jak dla zadania w p. 5 (każdorazowo należy zmienić skalę kolorów, tak żeby wartość minimalna i maksymalna za każdym razem miały ten sam kolor) – czy widać zmianę charakteru rozwiązania?

6.5 Dla lepszego zwizualizowania różnicy rozwiązań, proszę uzyskać na jednym wykresie "plot-over-line" krzywe dla wszystkich rozważanych przypadków warunku Neumanna (tylko temperatury, bez groupID) – należy dobrać tę samą linię dla wszystkich przypadków – biegnącą od granicy z warunkiem Dirichleta do granicy z warunkiem Neumanna

6.6 W sprawozdaniu proszę umieścić dyskusję i wnioski z uzyskanych wyników

7 Zadanie 7 (5.0): Badanie wpływu warunków brzegowych Robina (III rodzaju) na postać rozwiązania

W rozwiązywanym zadaniu należy zmienić warunek grzania z warunku Neumanna na warunek Robina.

```
{
    bcnum: .... ;
    radconv:{T_out = ... ; alfa = 10.0; eps = 0.0;};
},
```

Należy zadać temperaturę zewnętrzną otoczenia **T_out** jako wybraną przez siebie wartość z zakresu 350-390 i badać wpływ wartości współczynnika przekazywania ciepła **alfa** (*heat transfer coefficient*) na charakter i wartości rozwiązania. Wartości **alfa** powinny przyjmować wartości od początkowych małych np. w zakresie 10-20, do bardzo dużych np. w zakresie 10⁶-20⁶ (poprzez np. 100-200, itd. w sumie 4-5 wartości **alfa**, włącznie z dodatkową wartością **alfa=0.0** jako sprawdzeniem jaki warunek efektywnie uzyskuje się w tym przypadku)

- 7.1 Plikivtu uzyskane dla każdej wartości parametru alfa można zapisać pod nowymi nazwami i po rozwiązaniu zadania z nowymi danymi wczytywać pliki dla kolejnych zadań do ParaView
- 7.2 Dla każdego rozwiązania proszę uzyskać zrzut ekranu czy widać zmianę charakteru rozwiązania dla różnych wartości alfa?
- 7.3 Dla lepszego zwizualizowania różnicy rozwiązań, proszę uzyskać na jednym wykresie "plot-over-line" krzywe dla zadań z różnymi wartościami parametru alfa (tylko temperatury, bez groupID) – należy dobrać tę samą linię dla wszystkich przypadków – biegnącą od granicy z warunkiem Dirichleta do granicy z warunkiem Robina
- 7.4 Ostatecznym testem warunku brzegowego Robina jest porównanie rozwiązania uzyskanego z dużą wartością parametru alfa z rozwiązaniem uzyskanym przez zadanie (na tym samym brzegu co uprzednio warunek Robina) warunku Dirichleta z temperaturą T_out. Czy istnieje widoczna różnica? Czy można wysnuć z tego wniosek o możliwym alternatywnym sposobie zadawania warunku Dirichleta?
- 7.5 W sprawozdaniu proszę umieścić dyskusję i wnioski z uzyskanych wyników
- 8 Podsumowanie realizacji zadań (poniższa tabelka ma znaleźć się w sprawozdaniu bezpośrednio po wnioskach, a przed załącznikami - numeracja punktów realizacji kolejnych kroków laboratorium i załączników ma odpowiadać numeracji poniższych zadań)

Zadanie (skrócony opis)	OCENA własna w % (0-100)	OCENA prowadzącego w % (0-100)
Zad. 1 Przygotowanie pliku konfiguracyjnego problem_heat.dat		
Zad. 2 Przygotowanie pliku siatki obliczeniowej		
Zad. 3 Przygotowanie pliku warunków brzegowych		
Zad. 4 Przeprowadzenie symulacji		

Zad. 5 Wizualizacja wyników	
Zad. 6 Analiza wpływu warunku brzegowego Neumanna – z wizualizacją, wykresami, dyskusją i wnioskami	
Zad. 7 Analiza wpływu warunku brzegowego Robina – z wizualizacją, wykresami, dyskusją i wnioskami	
ŁĄCZNIE (700):	
OCENA KOŃCOWA:	

Sprawozdanie powinno zawierać opis realizacji wszystkich zadań zawartych w temacie, wraz z omówieniem podstaw teoretycznych, odpowiedziami na pytania, wydrukami kodu i plików konfiguracyjnych oraz zamieszczonymi zrzutami ekranu. Opis realizacji każdego zadania może kończyć się wnioskami wynikającymi z przebiegu realizacji, całe sprawozdanie powinno kończyć się wnioskami dotyczącymi całości tematu.