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Notation and notational conventions
Ω ⊂ IRN , N=1,2 or 3 – domain in 1D, 2D or 3D space

all domains are assumed to have smooth boundaries ∂Ω

standard font - scalar, bold - vector
x = [x, y, z] = [x1, x2, x3] - point in 3D space
t - time instant
f (x, t)[f(x, t)] – scalar [vector] function of space and time

the function will usually denote some description of state of domain points
the dependence on space and time is often omitted in notation

when indices i, j, k, l refer to cartesian space coordinates the summation
convention for repeated indices is used

uini =
∑

i uini

”,” denotes differentiation (for indices i, j, k, l of cartesian space
coordinates and partial derivatives with respect to time)

ui,i = ∂ui
∂xi

= ∇ · u = divu u,t = ∂u
∂t

standard mathematical notation, operators, etc.
e.g. indices of matrix entries: Aij element i, j of matrix A
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Description of state
Examples of state description:

material point
position (spatial coordinates)

Cartesian – x, polar, spherical, cylindrical
velocity

v =
dx
dt

(a single component: vi =
dxi

dt
= xi,t)

acceleration
a =

dv
dt

(a single component: ai =
dvi

dt
= vi,t)

displacement
l = x− x0 (

dl
dt

=
dx
dt

= v)

continuous object (1D, 2D and 3D domains)
scalar fields: energy – e(x, t)), temperature – T(x, t)
vector fields: displacement – l(x, t)), velocity – v(x, t)
tensor fields: strain – ε(x, t) ( εij = li,j + lj,i ), stress – σ(x, t)

discretization – a process of transferring a description in terms of
infinite number of values into a description that uses only a finite
number of values
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Derivation of fundamental equations in mechanics and
thermodynamics

The setting for the derivation of fundamental equations in mechanics
and thermodynamics in 2D and 3D
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The conservation of mass principle – mass balance
Mass is neither created nor destroyed

the rate of change of mass inside any domain must be equal to
the mass flux through the boundary of the domain:

d
dt

∫
Ω
ρdV = −

∫
∂Ω
ρvinidS

where:
ρ(x, t) – density at time t and point x ∈ Ω ,
v(x, t) – velocity,
n – the unit outward normal to ∂Ω

After applying the divergence theorem and taking into account that the
equation holds for any domain Ω we arrive at the differential equation

The continuity equation (mass balance)

∂ρ

∂t
+ (ρvi),i = 0
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The conservation of momentum principle
Newton’s second law of mechanics

the rate of change of momentum of a group of particles is equal
to the sum of all forces exerted on this group

d
dt

∫
Ωt

ρvjdV =

∫
∂Ωt

σjinidS +

∫
Ωt

bjdV

where
Ωt – portion of space occupied by the group of particles

Ωt may vary in time

σ – stress tensor, bj – body forces

The transport theorem

d
dt

∫
Ωt

fdV =

∫
Ωt

(
∂f
∂t

+ (fvi),i

)
dV

valid for any smooth function f (x, t)
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The transport theorem and the momentum balance
Material assumptions (constitutive equations):

stress tensor σji symmetric due to the conservation of angular momentum
stresses split according to the formula (δji – Kronecker’s delta):

σji = −pδji + τji

p – thermodynamic pressure as isotropic normal stresses p = − 1
3σii

τji – viscous stresses
isotropic Newtonian fluid, viscous stresses proportional to the rate of change of

deformation tensor (gradient of velocity tensor), τji = µ(vi,j + vj,i) + λδjivk,k

no volume viscosity (Stokes hypothesis, τii = 0), τji ≈ µ(vi,j + vj,i − 2
3δjivk,k)

Assuming the above constitutive equations and applying the transport theorem
together with the divergence theorem to the momentum balance leads to:

Momentum equation

∂(ρvj)

∂t
+ (ρvjvi),i +p,i−τji,i = bj
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Thermodynamic considerations

Basic principles
the principle of energy conservation, energy balance:

specific total energy (energy per unit volume): e = eI + eK + ep

specific internal energy, eI , expressed in specific forms for different
materials and processes
specific kinetic energy, eK = 1

2 vivi

specific potential energy, eP, possible for external force fields (further
neglected)

the first law of thermodynamics (general statement): ∆U = Q−W
the change in internal energy ∆U of a system
the amount of heat supplied to the system Q
the work done by the system W

the first law of thermodynamics (in practical calculations):
the expression for specific internal energy: deI = Tds− pdV

T – temperature, s – entropy, p – pressure, V = 1
ρ

– volume
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Thermodynamic considerations

Constitutive equations

ideal gas law: pV
T = const

for practical calculations: eI = p
(γ−1)ρ = cVT

heat capacity ratio γ =
cp

cV

specific heat capacities:
at constant volume, cV =

(
∂Q
∂T

)
V=const

at constant pressure, cp =
(
∂Q
∂T

)
p=const

the speed of sound c, c2 = γp
ρ

heat flux qi

Fourier’s law: qi = −κT,i
κ - the coefficient of thermal conductivity

µ = 1.45 T
3
2

T+110 · 10−6 – Sutherland’s law for viscosity as function of
temperature



Krzysztof Banaś, Advanced Computational Techniques 1/49

The conservation of energy principle
The energy balance

the rate of change of the total energy for a group of particles is
equal to the rate at which work is done by the external forces
plus an explicit inflow of energy through the boundary

d
dt

∫
Ωt

(ρe)dV = −
∫
∂Ωt

vj(pδji − τji)nidS−
∫
∂Ωt

qinidS

Additional terms possible for e.g.
heat sources
body forces

The standard procedure comprised of applying the transport and the
divergence theorems leads to :

Energy balance equation

∂(ρe)

∂t
+ ((ρe + p)vi − τjivj + qi),i = 0
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Classification of partial differential equations (PDEs)
The most common PDEs in scientific and technical applications are second
order PDEs (PDEs that involve up to the second order derivatives)

all second order linear PDEs can be classified as elliptic, parabolic or hyperbolic
Stationary problems correspond usually to elliptic PDEs, with the standard
form:

− ∂

∂xi

(
aij
∂u
∂xj

)
= f (x) − (aiju,j),i = f

Non-stationary problems, similar to heat equation, correspond to parabolic
PDEs, with the standard form

∂u
∂t
− ∂

∂xi

(
aij
∂u
∂xj

)
= f (x) u,t − (aiju,j),i = f

Non-stationary problems, of the type similar to elastodynamics equations,
correspond to hyperbolic PDEs, with the typical form for scalar unknowns:

∂2u
∂t2 −

∂

∂xi

(
aij
∂u
∂xj

)
= f (x) u,tt − (aiju,j),i = f



Krzysztof Banaś, Advanced Computational Techniques 1/49

Classification of partial differential equations (PDEs)

Elliptic partial differential equations:
prototypical example – Poisson problem (Laplace problem for f=0):

∆u = f ( ∆u = u,ii – Laplacian operator )

elliptic PDEs with the appropriate boundary conditions are prototypical
boundary value problems (BVPs)
the solutions to elliptic problems (BVPs) are smooth in typical situations
the solutions to elliptic BVPs satisfy the maximum principle

when certain conditions are fulfilled the maximum is obtained on the
boundary of the domain

standard formulations of the finite difference and the finite element
methods work well for elliptic problems

there are usually no problems with stability of solutions (they do not tend
to infinity)
the systems of linear equations associated with elliptic problems are often
(for symmetric coefficient arrays and some other conditions) symmetric
and positive definite
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Classification of partial differential equations (PDEs)

Parabolic partial differential equations:
parabolic equations require initial and boundary conditions for the
existence and uniqueness of solutions

parabolic equations lead to initial-boundary value problems (IBVPs)
the boundary conditions and initial condition(s) must agree

the solutions are smooth in typical situations (due to the elliptic, second
order in space, terms)

even for non-smooth initial conditions the solution rapidly smooths out
with increasing time the solution further smooths out (the spatial
derivatives tend to zero for problems with no sources)

the systems of linear equations associated with parabolic problems are
often (for symmetric coefficient arrays and some other conditions)
symmetric and positive definite
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Classification of partial differential equations (PDEs)

Hyperbolic partial differential equations:
hyperbolic equations require initial and boundary conditions for the
existence and uniqueness of solutions

hyperbolic equations lead to initial-boundary value problems (IBVPs)
the boundary conditions and initial condition(s) must agree

there exist curves, called characteristics, along which the solution
becomes the solution of an ODE

for specific cases the solution along characteristics does not change
e.g. for discontinuous initial condition(s) the solution remain
discontinuous
for advection problems in steady velocity fields the characteristics
coincide with the streamlines of the velocity field

hyperbolic problems correspond to wave and transport (convection,
advection) phenomena

because of that, boundaries are often classified as inflow or outflow
boundaries
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Discretization
We will consider several types of discretization

domain discretization – using a finite number of points and parameters,
instead of infinite number of points to describe geometric domains
function discretization – describing a function (usually continuous) using a
finite number of parameters and values at a finite number of points
equation discretization – transforming a differential equation for a function
(usually continuous) into an equation for a discretized function

Discretization usually introduces an error – the original domain, original
function and the solution to the original equation differ at certain points
from their discretized counterparts

the discretization error can be measured in a number of different ways
with the increasing number of parameters and points the discretized
domains, discretized functions and solutions to discretized equations usually
tend to their original counterparts (the discretization error goes to 0)
discretization is a form of approximation, we will often use the two terms
interchangeably

Only discretized equations, functions and domains are amenable to
computer processing
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Domain discretization
Computational domain

Ω ⊂ IRN , N=1,2 or 3 – domain in 1D, 2D or 3D space
Domain discretization – using a finite number of points and parameters,
instead of infinite number of points to describe the domain

the simplest discretization uses a finite number of points and straight line
segments to join them
more complex discretizations employ a finite number of points and
curvilinear segments that join them
in 2D the most popular are linear or curvilinear triangles and quadrilaterals
in 3D the most popular are linear or curvilinear tetrahedra and hexahedra,
as well as prisms and pyramids

The set of points and segments joining
them is called a grid (or mesh)
There are two basic types of grids (with
different neighbourhood relations)

structured (regular) grids
unstructured grids
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The finite element method
The finite element method is a method for approximating the
solutions to boundary value problems

The two fundamental ingredients of the FEM are:
the use of weak variational statements of the problems
the discretization of the computational domains into small parts,
called elements, within which the solution is approximated using
simple polynomials

The FEM is especially efficient for solving elliptic problems
(stationary with no time variable) in complex 3D domains

The FEM can also be used for solving initial boundary value
problems (with time variable), usually in combination with other
discretization methods such as the finite difference method or the
discontinuous Galerkin method
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The finite element method

Discretization of the computational domain:

The sum of all elements must completely fill the computational
domain

Elements cannot overlap
Elements should have sufficient quality

the ratio of the sizes of edges should be limited
the internal angles between the edges should not be too small

The ratio of the sizes of neighbouring elements should be limited
Types of meshes:

1D – division into small intervals
2D – popular elements: triangles, quadrilaterals
3D – popular elements: tetrahedra, hexahedra, prisms (less
frequent: pyramids)
apart from elements with straight edges (and plane faces in 3D)
there are elements with curved boundaries
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The finite element method
Finite element function spaces:

elements→ shape functions, φi

computational domain→ basis functions constructed from shape
functions, ψj

in the standard FEM basis functions are continuous
basis functions have as small support (the domain of non-zero
values) as possible

finite element solutions as linear combinations of basis functions

uh(x) = Uh
1ψ1 + Uh

2ψ2 + Uh
3ψ3 + ...+ Uh

NψN =

N∑
j

Uh
j ψj

uh(x) ∈ Vh(x) = span {ψ1, ψ2, ψ3, ..., ψN}

coefficients Uh
j of linear combination (degrees of freedom) form a

discrete FEM solution to the approximation problem
N – the size of vector Uh, i.e. the number of degrees of freedom,
is the size of a particular FEM problem
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Finite element formulation for the model 1D problem

The division of computational
domain into elements

Shape functions φi inside
elements

Basis functions ψj for the
whole computational domain

Example:

domain: (0, 1)

elements: e1 − (0, 0.5) and
e2 − (0.5, 0)

element vertices (finite element
nodes):
{w1,w2,w3} − {0, 0.5, 1.0}

w1 w2 w3e1 e2

φ2φ1

11

φ2φ1

11

w1 w2 w3
e1 e2

w1 w2 w3
e1 e2

w1 w2 w3
e1 e2

1

1

1

ϕ1

ϕ2

ϕ3
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Finite element interpolation

Using finite element spaces it is possible to construct not only
approximate solutions but also interpolants (functions that agree
with a set of discrete values)
Finite element interpolation is especially easy for the spaces
where finite element degrees of freedom correspond to the values
at specific points (warning: there are spaces where it is not true!)

for typical finite element spaces with linear basis (shape)
functions the values of degrees of freedom are the values of finite
element solutions at element vertices
Example:

interpolation for the set of points: {(w1, 0.5), (w2, 0.3), (w3, 1.0)}
Uh = {0.5, 0.3, 1.0}
uh(x) = 0.5ψ1(x) + 0.3ψ2(x) + 1.0ψ3(x)

w1 w2 w3
e1 e2

0.5
0.3

1.0
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Finite element formulation for the model 1D problem

Weak formulation:
Find a function uh ∈ Vh ⊂ V such that the following holds:(

duh

dx
,

dwh

dx

)
= (f ,w) + u

′
1 · wh(1) ∀wh ∈ Vh

0 ⊂ V0

Domain discretization:
Partition of (0, 1) into subintervals (xj−1, xj) of length
hj = xj − xj−1 with h = max hj

Finite element discretization (approximation):

uh =

N∑
j

Uh
j ψj wh =

N∑
i

Wh
i ψi

Hence:(
d
∑N

j Uh
j ψj

dx
,

d
∑N

i Wh
i ψi

dx

)
=

N∑
i

Wh
i

N∑
j

Uh
j

(
dψj

dx
,

dψi

dx

)
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Finite element approximation for the model 1D problem

General finite element solution procedure consists of two steps:
creation of the system of linear equations:

N∑
i

Wh
i

(
N∑
j

Uh
j

(
dψj

dx
,

dψi

dx

)
− (f , ψi)− u′1 · ψi(1)

)
= 0 ∀Wh = {Wh

1,W
h
2, ...,W

h
N}

Hence:
N∑
j

Uh
j

(
dψj

dx
,

dψi

dx

)
= (f , ψi) + u′1 · ψi(1) i = 1, 2, ...,N

i.e. N∑
j

Ai,jUh
j = bi i = 1, 2, ...,N

with: Ai,j =

(
dψj

dx
,

dψi

dx

)
and bi = (f , ψi) + u′1 · ψi(1)

solution of the system of linear equations
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Finite element approximation
Finite element approximations to elliptic problems have several
important properties:

For many problems it is relatively easy to prove the existence
and uniqueness of exact and approximate finite element solutions
using the corresponding weak formulations

this concerns in particular the model 1D problem considered
FEM approximate solutions satisfy the best approximation
property:

for the model 1D problem:

‖(uh − u)′‖ < ‖(wh − u)′‖ ∀wh ∈ Vh
0

Using the interpolant of the exact solution as the function wh in
the formula above and the interpolation error estimate it is
possible to estimate the error of the finite element solution as:

for the model 1D problem:

‖eh‖ = ‖uh − u‖ < Ch2 · max |u′′|
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Finite element approximation

The properties of FEM approximations have important consequences:
one can control the error of finite element solutions by a suitable
choice of element sizes

with the maximal element size going to zero finite element
solutions converge to the exact solution

Additional observations:
the error depends on the second order derivative of the exact solution, not the
gradient (as is often incorrectly stated)

with the element size going to zero, the number of elements in the
computational domain and the number of degrees of freedom in the system of
linear equations associated with the problem go to infinity

however: the computational cost does not grow quadratically with the
number of degrees of freedom, since the matrices of linear systems are
very sparse

for really large problems the number of zeros in the system
matrices can easily exceed 99,99%
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1D stationary heat transfer problem

Reality (experiment)

Physical model
Energy conservation - the rate of change

of heat flux is equal to heat source

dq/dx = s(x)

Fourier’s law - heat flux is proportional
to the temperature gradient

q = −k · dT/dx

• k - heat conduction coefficient

Mathematical model
Ordinary differential equation

− d
dx

(
k

dT
dx

)
= s(x)

+ Boundary conditions
(for both ends, possible types:

- temperature, e.g.
T(0) = T0

- heat flux, e.g.
q(L) = −k · dT/dx = q0

- other (convection, radiation)
= Boundary value problem
→ existence and

uniqueness of results
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Finite element formulation for stationary heat transfer problems

For differential formulation of the form (with zero Dirichlet BC only, for
simplicity):

−∇ · (k(T, x)∇T) = s

The following weak statement can be derived:

Find approximate function Th ∈ Vh
T , such that the following

statement: ∫
Ω

k(Th, x)Th
,iw

h
,idΩ =

∫
Ω

swhdΩ

holds for every test function wh ∈ Vh
w.

For material properties being the function of x only, the problem is
(quasi-)linear
For material properties being the function of T as well, the problem has
material non-linearity
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Finite element formulation for stationary heat transfer problems

Adding Neumann and Robin boundary conditions:

−k(Th, x)
dT
dn

= −k(Th, x)T,ini = −qN on ΓN

−k(Th, x)
dT
dn

= −k(Th, x)T,ini = c(Th, x)(T − Text) on ΓR

Lead to the formulation with additional terms:

Find approximate function Th ∈ Vh
T , such that the following

statement:∫
Ω

k(Th, x)Th
,iw

h
,idΩ =

∫
Ω

swhdΩ+

∫
ΓN

qNwhdΓ−
∫

ΓR

c(T−Text)whdΓ

holds for every test function wh ∈ Vh
w
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Finite element formulation for stationary heat transfer problems

The final formulation for linear stationary heat transfer problems:

Find approximate function Th ∈ Vh
T , such that the following

statement:∫
Ω

kTh
,iw

h
,idΩ+

∫
ΓR

cTwhdΓ =

∫
Ω

swhdΩ+

∫
ΓN

qNwhdΓ+

∫
ΓR

cTextwhdΓ

holds for every test function wh ∈ Vh
w

... leads to the following formulae for the entries of the global stiffness matrix
and the global load vector

Ai,j =

∫
Ω

k
dψj

dxl

dψi

dxl
dΩ +

∫
ΓR

cψjψidΓ

bi =

∫
Ω

sψidΩ +

∫
ΓN

qNψidΓ +

∫
ΓR

cTextψidΓ
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Finite element systems of linear equations

Standard discretizations for linear stationary problems require the
solution of a system of linear equations

N∑
j

Ai,jUh
j = bi i = 1, 2, ...,N ≡ AUh = b

for non-stationary problems and implicit time integration a system of
linear equations is solved at every time step
for non-linear problems a system of linear equations is solved for every
iteration of the solution method

The procedures for solving a linear system include
the creation of the system of linear equations that includes the integration
of the terms from the weak statement for suitable pairs of basis functions

the integrals are calculated separately for each element, forming local, element
system matrices and right hand side vectors

the local matrices and vectors are than assembled into the global system matrix
and the global right hand side vector

the solution of the system, that takes into account its special form
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Finite element systems of linear equations

The assembly of global finite element systems of linear equations
local element matrices computed using numerical integration
local numbering of degrees of freedom
global numbering of degrees of freedom



Krzysztof Banaś, Advanced Computational Techniques 1/49

Finite element systems of linear equations

The solved equations are
usually large (up to billions of unknowns)
sparse (for large systems more than 99.99% entries in the system matrix
are zero)
often ill conditioned – with large condition number and slow convergence
of iterative methods
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Finite element systems of linear equations

Practical solutions for solving FEM systems of linear equations
Direct methods for solving large sparse systems of linear equations

the variants of Gaussian elimination
the problem of fill-in

renumbering
frontal methods
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Finite element systems of linear equations

Practical solutions for solving FEM systems of linear equations
Iterative methods for solving large sparse systems of linear equations

slow convergence of standard iterative methods
simple preconditioners: Jacobi (diagonal scaling), Gauss-Seidel,
incomplete LU factorization
complex preconditioners: multigrid, special preconditioners for specific
problems
the best iterative solvers can have linear complexity, both in terms of
solution time and storage requirements
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Finite element solution procedures

Parallel solution based on domain decomposition
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Non-linear problem solution
Finite element space discretization of non-linear problems leads to the set
of non-linear algebraic equations for the vector of degrees of freedom Uh,
that can be shortly written as:

A(Uh)Uh = b

The general methods for solving multidimensional systems of the form

F(U) = 0

usually refer to the Newton’s iterative method, that finds the subsequent
approximations

Uk+1 = Uk + ∆Uk

where ∆Uk is the solution to the equation

J(Uk) ·∆Uk = −F(Uk)

with the Jacobian matrix J representing the gradient of the function F

J = ∂F/∂U
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Non-linear problem solution

Applying the Newton’s method to the system:

A(Uh)Uh = b
leads to the equation(

∂A
∂Uh (Uh

k)Uh
k + A(Uh

k)

)
·∆Uh

k = −A(Uh
k)Uh

k + b

When the derivative ∂A
∂Uh is assumed to vanish, the system reduces to the

form
A(Uh

k) · Uh
k+1 = b

that can be interpreted as using fixed point (Picard’s) iterations

Uh
k+1 = A(Uh

k)−1 · b

for the original nonlinear problem
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Non-linear problem solution

In general (for 1D case) Picard’s (fixed point) iterations are defined as
subsequent computations

xk+1 = g(xk)

that after convergence lead to the satisfaction of the nonlinear problem
x = g(x)

Newton’s method iterations for the problem f (x) = 0:

xk+1 = x(k)− f ′(xk)
−1 · f (xk) [= g(xk)]

can be interpreted as a special case of fixed point iterations
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Finite element approximation of elliptic problems

Norms for measuring error (and other functions defined over Ω)
L2

‖e‖2
L2(Ω) =

∫
Ω

(e · e)dΩ

H1

‖e‖2
H1(Ω) =

∫
Ω

(e,i · e,i + e · e) dΩ

H1 seminorm
|e|2H1(Ω) =

∫
Ω

(e,i · e,i)dΩ

energy norm
for many problems their bilinear forms satisfy the requirements for scalar
products and, hence, can be used to define a norm:

‖e‖2
a = a(e, e)
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Finite element approximation of elliptic problems

Fundamental error estimate for finite element approximation of elliptic
problems is

‖u− uh‖V ≤ C · ‖u− wh‖V ∀wh ∈ Ṽh

where ‖.‖V is a norm induced by the scalar product defined for the space V
The standard method of obtaining absolute error estimates for finite
element approximation is to select a particular suitable function wh

(usually interpolant of u in Vh) and then obtaining error estimates for wh

Interpolation theory gives error estimates for interpolants in different finite
element spaces – for linear, quadratic, etc. shape functions
For standard continuous polynomials of order p one can finally get:

‖u− uh‖H1(Ω) ≤ Chp|u|Hp+1(Ω)

The estimate requires the exact solution u to be sufficiently smooth, that
depends on the problem and the shape of the computational domain Ω
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Finite element approximation of elliptic problems

Typical convergence curves for finite element approximation of elliptic
problems, measured in L2 and H1 norms

log-log scale to explicitly show convergence rates
the solution usually converges in L2 norm with the rate hp+1

higher order approximations have better accuracy, but require more
computational resources, for the same number of degrees of freedom
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Intermezzo - how to read graphs
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Finite element approximation of elliptic problems

The error of the finite element solution is related to the smoothness of the
exact solution

for certain problems (e.g. with discontinuous coefficients - left) and for
certain computational domains (e.g. with corners - right) the exact solution
has large higher order derivatives
the convergence rates for such problems and uniform mesh refinements are
slow
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Finite element approximation of elliptic problems

The nature of the finite element error estimates suggests that it is possible to
decrease approximation error, especially for the problems with singularities,
by local changes to approximation properties
This observation gives rise to the adaptive finite element method, where in
the places with higher approximation error the approximation is locally
improved
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Finite element approximation of elliptic problems

There are several main types of adaptivity:
h-adaptivity – the size of elements is reduced by dividing elements (the
number of degrees of freedom grows)
p adaptivity – the local order of approximation is increased (this requires
special techniques to maintain the continuity of the solution)
hp-adaptivity – the combination of the two above
r-adaptivity – the finite element nodes are moved, in order to create parts of
the domain with smaller elements (the total number of degree of freedom may
remain the same)
remeshing – creating a new, finer grid for the selected parts of the domain (or
a new mesh with variable ”density” of finite element nodes)
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Finite element approximation of elliptic problems

h adaptivity at work
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Finite element approximation of elliptic problems

hp-adaptive approximation for an elliptic problem in the L-shape domain
subsequent figures show adapted meshes with increasing magnification, up
to 100000000, colours represent the order of approximation p, from 1
(blue) to 6 (pink)
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Finite element approximation of elliptic problems
The justification for using hp-adaptivity is its best convergence rate

while standard (even higher order) h-adaptive FEM converges algebraically,
hp-adaptive FEM has exponential convergence rates

The main problems of hp-adaptivity are:
adaptive strategies – the selection which of the two options apply for a given
element
complex coding
the limited number of problems for which hp-adaptivity can show its full
potential
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Finite element approximation of elliptic problems

Advanced topics:
Error estimates - different techniques

Zienkiewicz-Zhu and derivative recovery
Adaptive strategies:

equidistribution of errors
hp - adaptivity

Special strategies for special types of problems
anisotropic mesh refinements
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